FATE项目中横向联邦逻辑回归的多Host支持与实现
2025-06-05 00:37:39作者:滑思眉Philip
多Host架构在联邦学习中的重要性
在联邦学习场景中,多Host架构是一种常见且重要的部署方式。FATE作为领先的联邦学习框架,其横向联邦逻辑回归算法天然支持多Host模式。这种架构允许数据分布在多个参与方(Host)之间,共同训练模型而不需要共享原始数据,这对于保护数据隐私同时利用多方数据价值具有重要意义。
FATE 1.x版本的多Host实现原理
FATE 1.11.4版本中,横向联邦逻辑回归通过以下机制实现多Host支持:
- 数据分布:每个Host持有部分样本数据,但所有Host共享相同的特征空间
- 梯度聚合:在训练过程中,各Host计算本地梯度后,通过安全聚合协议将梯度汇总
- 参数更新:聚合后的全局梯度用于更新模型参数,然后分发给各Host
多Host配置示例
在FATE 1.11.4中配置多Host横向联邦逻辑回归,主要涉及以下关键配置项:
{
"initiator": {
"role": "guest",
"party_id": 9999
},
"job_parameters": {
"work_mode": 1
},
"role": {
"host": [10000, 10001, 10002], # 多个Host参与方
"guest": [9999]
},
"component_parameters": {
"common": {
"hetero_lr_0": {
"penalty": "L2",
"optimizer": "rmsprop",
"tol": 0.001,
"alpha": 0.01,
"max_iter": 10,
"batch_size": -1,
"learning_rate": 0.15,
"early_stop": "diff",
"init_param": {
"init_method": "random_uniform"
}
}
}
}
}
多Host场景下的训练流程
- 初始化阶段:各Host加载本地数据,Guest方初始化模型参数
- 训练迭代:
- 各Host基于当前参数计算本地梯度
- 通过安全聚合协议汇总所有Host的梯度
- 更新全局模型参数
- 模型评估:在验证集上评估模型性能
- 模型保存:训练完成后保存联邦模型
实际应用中的注意事项
- 数据对齐:确保各Host的数据特征空间一致
- 通信开销:Host数量增加会带来额外的通信成本
- 收敛速度:多Host场景下可能需要调整学习率等超参数
- 安全性:建议启用同态加密等隐私保护机制
性能优化建议
对于大规模多Host场景,可以考虑以下优化措施:
- 采用小批量梯度下降减少通信频率
- 使用梯度压缩技术降低通信数据量
- 实现异步更新机制提高训练效率
- 合理设置学习率衰减策略
FATE框架的多Host支持为实际业务场景中的多方协作提供了灵活可靠的解决方案,开发者可以根据具体需求调整配置参数以获得最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1