FATE项目中横向联邦逻辑回归的多Host支持与实现
2025-06-05 07:31:54作者:滑思眉Philip
多Host架构在联邦学习中的重要性
在联邦学习场景中,多Host架构是一种常见且重要的部署方式。FATE作为领先的联邦学习框架,其横向联邦逻辑回归算法天然支持多Host模式。这种架构允许数据分布在多个参与方(Host)之间,共同训练模型而不需要共享原始数据,这对于保护数据隐私同时利用多方数据价值具有重要意义。
FATE 1.x版本的多Host实现原理
FATE 1.11.4版本中,横向联邦逻辑回归通过以下机制实现多Host支持:
- 数据分布:每个Host持有部分样本数据,但所有Host共享相同的特征空间
- 梯度聚合:在训练过程中,各Host计算本地梯度后,通过安全聚合协议将梯度汇总
- 参数更新:聚合后的全局梯度用于更新模型参数,然后分发给各Host
多Host配置示例
在FATE 1.11.4中配置多Host横向联邦逻辑回归,主要涉及以下关键配置项:
{
"initiator": {
"role": "guest",
"party_id": 9999
},
"job_parameters": {
"work_mode": 1
},
"role": {
"host": [10000, 10001, 10002], # 多个Host参与方
"guest": [9999]
},
"component_parameters": {
"common": {
"hetero_lr_0": {
"penalty": "L2",
"optimizer": "rmsprop",
"tol": 0.001,
"alpha": 0.01,
"max_iter": 10,
"batch_size": -1,
"learning_rate": 0.15,
"early_stop": "diff",
"init_param": {
"init_method": "random_uniform"
}
}
}
}
}
多Host场景下的训练流程
- 初始化阶段:各Host加载本地数据,Guest方初始化模型参数
- 训练迭代:
- 各Host基于当前参数计算本地梯度
- 通过安全聚合协议汇总所有Host的梯度
- 更新全局模型参数
- 模型评估:在验证集上评估模型性能
- 模型保存:训练完成后保存联邦模型
实际应用中的注意事项
- 数据对齐:确保各Host的数据特征空间一致
- 通信开销:Host数量增加会带来额外的通信成本
- 收敛速度:多Host场景下可能需要调整学习率等超参数
- 安全性:建议启用同态加密等隐私保护机制
性能优化建议
对于大规模多Host场景,可以考虑以下优化措施:
- 采用小批量梯度下降减少通信频率
- 使用梯度压缩技术降低通信数据量
- 实现异步更新机制提高训练效率
- 合理设置学习率衰减策略
FATE框架的多Host支持为实际业务场景中的多方协作提供了灵活可靠的解决方案,开发者可以根据具体需求调整配置参数以获得最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
703
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
683
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
150
51
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
928
82