OmniXAI 使用教程
2024-09-14 03:45:14作者:廉皓灿Ida
1. 项目介绍
OmniXAI(全称 Omni eXplainable AI)是一个用于可解释人工智能(XAI)的 Python 库,旨在为数据科学家、机器学习研究人员和从业者提供一个全面的工具箱,以简化可解释 AI 的实现。OmniXAI 支持多种数据类型(如表格数据、图像、文本和时间序列)、多种机器学习模型(包括 Scikit-learn 中的传统模型和 PyTorch/TensorFlow 中的深度学习模型),并集成了多种解释方法,包括模型特定的和模型无关的解释方法(如特征归属解释、反事实解释、基于梯度的解释等)。
OmniXAI 的主要特点包括:
- 支持多种数据类型和模型。
- 提供统一的接口,方便用户生成解释。
- 包含一个图形用户界面(GUI)仪表板,用于可视化解释结果。
- 易于扩展,用户可以轻松添加新的解释方法。
2. 项目快速启动
安装
你可以通过 pip 安装 OmniXAI:
pip install omnixai
快速启动示例
以下是一个简单的示例,展示如何使用 OmniXAI 对表格数据进行解释。
from omnixai.data.tabular import Tabular
from omnixai.explainers.tabular import TabularExplainer
from omnixai.preprocessing.tabular import TabularTransform
# 加载数据集
feature_names = [
"Age", "Workclass", "fnlwgt", "Education", "Education-Num", "Marital Status",
"Occupation", "Relationship", "Race", "Sex", "Capital Gain", "Capital Loss",
"Hours per week", "Country", "label"
]
df = pd.DataFrame(np.genfromtxt('adult.data', delimiter=' ', dtype=str), columns=feature_names)
tabular_data = Tabular(
df,
categorical_columns=[feature_names[i] for i in [1, 3, 5, 6, 7, 8, 9, 13]],
target_column='label'
)
# 数据预处理
transformer = TabularTransform()
transformer.fit(tabular_data)
class_names = transformer.class_names
x = transformer.transform(tabular_data)
# 分割训练和测试数据集
train, test, train_labels, test_labels = \
sklearn.model_selection.train_test_split(x[:, :-1], x[:, -1], train_size=0.80)
# 训练一个 XGBoost 模型
model = xgboost.XGBClassifier(n_estimators=300, max_depth=5)
model.fit(train, train_labels)
# 初始化 TabularExplainer
explainer = TabularExplainer(
explainers=["lime", "shap", "mace", "pdp", "ale"],
mode="classification",
data=train_data,
model=model,
preprocess=lambda z: transformer.transform(z),
params=[
"mace": ["ignored_features": ["Sex", "Race", "Relationship", "Capital Loss"]]
]
)
# 生成解释
test_instances = test_data[:5]
local_explanations = explainer.explain(X=test_instances)
global_explanations = explainer.explain_global(
params=["pdp": ["features": ["Age", "Education-Num", "Capital Gain", "Capital Loss", "Hours per week", "Education", "Marital Status", "Occupation"]]]
)
3. 应用案例和最佳实践
应用案例
OmniXAI 可以应用于多种场景,包括但不限于:
- 表格数据分类:如收入预测、信用评分等。
- 图像分类:如图像识别、目标检测等。
- 文本分类:如情感分析、垃圾邮件检测等。
- 时间序列分析:如异常检测、预测等。
最佳实践
- 选择合适的解释方法:根据任务类型和数据特点选择合适的解释方法。例如,对于表格数据,可以使用 LIME 和 SHAP;对于图像数据,可以使用 Grad-CAM 和 Integrated Gradient。
- 使用仪表板进行可视化:OmniXAI 提供了一个仪表板,可以直观地查看解释结果,帮助用户更好地理解模型的决策过程。
- 扩展和定制:OmniXAI 设计灵活,用户可以根据需要添加新的解释方法或定制现有的解释方法。
4. 典型生态项目
OmniXAI 可以与其他开源项目结合使用,以增强其功能和应用范围。以下是一些典型的生态项目:
- BentoML:用于模型部署和服务的开源框架,可以与 OmniXAI 结合,将解释器部署到生产环境中。
- Scikit-learn:用于传统机器学习的库,OmniXAI 可以解释 Scikit-learn 中的模型。
- PyTorch/TensorFlow:用于深度学习的库,OmniXAI 可以解释这些库中的模型,并提供基于梯度的解释方法。
通过结合这些生态项目,OmniXAI 可以更好地满足不同场景下的需求,提供更全面和强大的可解释 AI 解决方案。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5