OmniXAI 使用教程
2024-09-14 13:30:31作者:廉皓灿Ida
1. 项目介绍
OmniXAI(全称 Omni eXplainable AI)是一个用于可解释人工智能(XAI)的 Python 库,旨在为数据科学家、机器学习研究人员和从业者提供一个全面的工具箱,以简化可解释 AI 的实现。OmniXAI 支持多种数据类型(如表格数据、图像、文本和时间序列)、多种机器学习模型(包括 Scikit-learn 中的传统模型和 PyTorch/TensorFlow 中的深度学习模型),并集成了多种解释方法,包括模型特定的和模型无关的解释方法(如特征归属解释、反事实解释、基于梯度的解释等)。
OmniXAI 的主要特点包括:
- 支持多种数据类型和模型。
- 提供统一的接口,方便用户生成解释。
- 包含一个图形用户界面(GUI)仪表板,用于可视化解释结果。
- 易于扩展,用户可以轻松添加新的解释方法。
2. 项目快速启动
安装
你可以通过 pip 安装 OmniXAI:
pip install omnixai
快速启动示例
以下是一个简单的示例,展示如何使用 OmniXAI 对表格数据进行解释。
from omnixai.data.tabular import Tabular
from omnixai.explainers.tabular import TabularExplainer
from omnixai.preprocessing.tabular import TabularTransform
# 加载数据集
feature_names = [
"Age", "Workclass", "fnlwgt", "Education", "Education-Num", "Marital Status",
"Occupation", "Relationship", "Race", "Sex", "Capital Gain", "Capital Loss",
"Hours per week", "Country", "label"
]
df = pd.DataFrame(np.genfromtxt('adult.data', delimiter=' ', dtype=str), columns=feature_names)
tabular_data = Tabular(
df,
categorical_columns=[feature_names[i] for i in [1, 3, 5, 6, 7, 8, 9, 13]],
target_column='label'
)
# 数据预处理
transformer = TabularTransform()
transformer.fit(tabular_data)
class_names = transformer.class_names
x = transformer.transform(tabular_data)
# 分割训练和测试数据集
train, test, train_labels, test_labels = \
sklearn.model_selection.train_test_split(x[:, :-1], x[:, -1], train_size=0.80)
# 训练一个 XGBoost 模型
model = xgboost.XGBClassifier(n_estimators=300, max_depth=5)
model.fit(train, train_labels)
# 初始化 TabularExplainer
explainer = TabularExplainer(
explainers=["lime", "shap", "mace", "pdp", "ale"],
mode="classification",
data=train_data,
model=model,
preprocess=lambda z: transformer.transform(z),
params=[
"mace": ["ignored_features": ["Sex", "Race", "Relationship", "Capital Loss"]]
]
)
# 生成解释
test_instances = test_data[:5]
local_explanations = explainer.explain(X=test_instances)
global_explanations = explainer.explain_global(
params=["pdp": ["features": ["Age", "Education-Num", "Capital Gain", "Capital Loss", "Hours per week", "Education", "Marital Status", "Occupation"]]]
)
3. 应用案例和最佳实践
应用案例
OmniXAI 可以应用于多种场景,包括但不限于:
- 表格数据分类:如收入预测、信用评分等。
- 图像分类:如图像识别、目标检测等。
- 文本分类:如情感分析、垃圾邮件检测等。
- 时间序列分析:如异常检测、预测等。
最佳实践
- 选择合适的解释方法:根据任务类型和数据特点选择合适的解释方法。例如,对于表格数据,可以使用 LIME 和 SHAP;对于图像数据,可以使用 Grad-CAM 和 Integrated Gradient。
- 使用仪表板进行可视化:OmniXAI 提供了一个仪表板,可以直观地查看解释结果,帮助用户更好地理解模型的决策过程。
- 扩展和定制:OmniXAI 设计灵活,用户可以根据需要添加新的解释方法或定制现有的解释方法。
4. 典型生态项目
OmniXAI 可以与其他开源项目结合使用,以增强其功能和应用范围。以下是一些典型的生态项目:
- BentoML:用于模型部署和服务的开源框架,可以与 OmniXAI 结合,将解释器部署到生产环境中。
- Scikit-learn:用于传统机器学习的库,OmniXAI 可以解释 Scikit-learn 中的模型。
- PyTorch/TensorFlow:用于深度学习的库,OmniXAI 可以解释这些库中的模型,并提供基于梯度的解释方法。
通过结合这些生态项目,OmniXAI 可以更好地满足不同场景下的需求,提供更全面和强大的可解释 AI 解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218