OmniXAI 使用教程
2024-09-14 13:30:31作者:廉皓灿Ida
1. 项目介绍
OmniXAI(全称 Omni eXplainable AI)是一个用于可解释人工智能(XAI)的 Python 库,旨在为数据科学家、机器学习研究人员和从业者提供一个全面的工具箱,以简化可解释 AI 的实现。OmniXAI 支持多种数据类型(如表格数据、图像、文本和时间序列)、多种机器学习模型(包括 Scikit-learn 中的传统模型和 PyTorch/TensorFlow 中的深度学习模型),并集成了多种解释方法,包括模型特定的和模型无关的解释方法(如特征归属解释、反事实解释、基于梯度的解释等)。
OmniXAI 的主要特点包括:
- 支持多种数据类型和模型。
- 提供统一的接口,方便用户生成解释。
- 包含一个图形用户界面(GUI)仪表板,用于可视化解释结果。
- 易于扩展,用户可以轻松添加新的解释方法。
2. 项目快速启动
安装
你可以通过 pip 安装 OmniXAI:
pip install omnixai
快速启动示例
以下是一个简单的示例,展示如何使用 OmniXAI 对表格数据进行解释。
from omnixai.data.tabular import Tabular
from omnixai.explainers.tabular import TabularExplainer
from omnixai.preprocessing.tabular import TabularTransform
# 加载数据集
feature_names = [
"Age", "Workclass", "fnlwgt", "Education", "Education-Num", "Marital Status",
"Occupation", "Relationship", "Race", "Sex", "Capital Gain", "Capital Loss",
"Hours per week", "Country", "label"
]
df = pd.DataFrame(np.genfromtxt('adult.data', delimiter=' ', dtype=str), columns=feature_names)
tabular_data = Tabular(
df,
categorical_columns=[feature_names[i] for i in [1, 3, 5, 6, 7, 8, 9, 13]],
target_column='label'
)
# 数据预处理
transformer = TabularTransform()
transformer.fit(tabular_data)
class_names = transformer.class_names
x = transformer.transform(tabular_data)
# 分割训练和测试数据集
train, test, train_labels, test_labels = \
sklearn.model_selection.train_test_split(x[:, :-1], x[:, -1], train_size=0.80)
# 训练一个 XGBoost 模型
model = xgboost.XGBClassifier(n_estimators=300, max_depth=5)
model.fit(train, train_labels)
# 初始化 TabularExplainer
explainer = TabularExplainer(
explainers=["lime", "shap", "mace", "pdp", "ale"],
mode="classification",
data=train_data,
model=model,
preprocess=lambda z: transformer.transform(z),
params=[
"mace": ["ignored_features": ["Sex", "Race", "Relationship", "Capital Loss"]]
]
)
# 生成解释
test_instances = test_data[:5]
local_explanations = explainer.explain(X=test_instances)
global_explanations = explainer.explain_global(
params=["pdp": ["features": ["Age", "Education-Num", "Capital Gain", "Capital Loss", "Hours per week", "Education", "Marital Status", "Occupation"]]]
)
3. 应用案例和最佳实践
应用案例
OmniXAI 可以应用于多种场景,包括但不限于:
- 表格数据分类:如收入预测、信用评分等。
- 图像分类:如图像识别、目标检测等。
- 文本分类:如情感分析、垃圾邮件检测等。
- 时间序列分析:如异常检测、预测等。
最佳实践
- 选择合适的解释方法:根据任务类型和数据特点选择合适的解释方法。例如,对于表格数据,可以使用 LIME 和 SHAP;对于图像数据,可以使用 Grad-CAM 和 Integrated Gradient。
- 使用仪表板进行可视化:OmniXAI 提供了一个仪表板,可以直观地查看解释结果,帮助用户更好地理解模型的决策过程。
- 扩展和定制:OmniXAI 设计灵活,用户可以根据需要添加新的解释方法或定制现有的解释方法。
4. 典型生态项目
OmniXAI 可以与其他开源项目结合使用,以增强其功能和应用范围。以下是一些典型的生态项目:
- BentoML:用于模型部署和服务的开源框架,可以与 OmniXAI 结合,将解释器部署到生产环境中。
- Scikit-learn:用于传统机器学习的库,OmniXAI 可以解释 Scikit-learn 中的模型。
- PyTorch/TensorFlow:用于深度学习的库,OmniXAI 可以解释这些库中的模型,并提供基于梯度的解释方法。
通过结合这些生态项目,OmniXAI 可以更好地满足不同场景下的需求,提供更全面和强大的可解释 AI 解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
Ascend Extension for PyTorch
Python
264
299
暂无简介
Dart
710
170
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
181
67
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
React Native鸿蒙化仓库
JavaScript
284
332
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
430
130