OmniXAI 使用教程
2024-09-14 13:22:04作者:廉皓灿Ida
1. 项目介绍
OmniXAI(全称 Omni eXplainable AI)是一个用于可解释人工智能(XAI)的 Python 库,旨在为数据科学家、机器学习研究人员和从业者提供一个全面的工具箱,以简化可解释 AI 的实现。OmniXAI 支持多种数据类型(如表格数据、图像、文本和时间序列)、多种机器学习模型(包括 Scikit-learn 中的传统模型和 PyTorch/TensorFlow 中的深度学习模型),并集成了多种解释方法,包括模型特定的和模型无关的解释方法(如特征归属解释、反事实解释、基于梯度的解释等)。
OmniXAI 的主要特点包括:
- 支持多种数据类型和模型。
- 提供统一的接口,方便用户生成解释。
- 包含一个图形用户界面(GUI)仪表板,用于可视化解释结果。
- 易于扩展,用户可以轻松添加新的解释方法。
2. 项目快速启动
安装
你可以通过 pip 安装 OmniXAI:
pip install omnixai
快速启动示例
以下是一个简单的示例,展示如何使用 OmniXAI 对表格数据进行解释。
from omnixai.data.tabular import Tabular
from omnixai.explainers.tabular import TabularExplainer
from omnixai.preprocessing.tabular import TabularTransform
# 加载数据集
feature_names = [
"Age", "Workclass", "fnlwgt", "Education", "Education-Num", "Marital Status",
"Occupation", "Relationship", "Race", "Sex", "Capital Gain", "Capital Loss",
"Hours per week", "Country", "label"
]
df = pd.DataFrame(np.genfromtxt('adult.data', delimiter=' ', dtype=str), columns=feature_names)
tabular_data = Tabular(
df,
categorical_columns=[feature_names[i] for i in [1, 3, 5, 6, 7, 8, 9, 13]],
target_column='label'
)
# 数据预处理
transformer = TabularTransform()
transformer.fit(tabular_data)
class_names = transformer.class_names
x = transformer.transform(tabular_data)
# 分割训练和测试数据集
train, test, train_labels, test_labels = \
sklearn.model_selection.train_test_split(x[:, :-1], x[:, -1], train_size=0.80)
# 训练一个 XGBoost 模型
model = xgboost.XGBClassifier(n_estimators=300, max_depth=5)
model.fit(train, train_labels)
# 初始化 TabularExplainer
explainer = TabularExplainer(
explainers=["lime", "shap", "mace", "pdp", "ale"],
mode="classification",
data=train_data,
model=model,
preprocess=lambda z: transformer.transform(z),
params=[
"mace": ["ignored_features": ["Sex", "Race", "Relationship", "Capital Loss"]]
]
)
# 生成解释
test_instances = test_data[:5]
local_explanations = explainer.explain(X=test_instances)
global_explanations = explainer.explain_global(
params=["pdp": ["features": ["Age", "Education-Num", "Capital Gain", "Capital Loss", "Hours per week", "Education", "Marital Status", "Occupation"]]]
)
3. 应用案例和最佳实践
应用案例
OmniXAI 可以应用于多种场景,包括但不限于:
- 表格数据分类:如收入预测、信用评分等。
- 图像分类:如图像识别、目标检测等。
- 文本分类:如情感分析、垃圾邮件检测等。
- 时间序列分析:如异常检测、预测等。
最佳实践
- 选择合适的解释方法:根据任务类型和数据特点选择合适的解释方法。例如,对于表格数据,可以使用 LIME 和 SHAP;对于图像数据,可以使用 Grad-CAM 和 Integrated Gradient。
- 使用仪表板进行可视化:OmniXAI 提供了一个仪表板,可以直观地查看解释结果,帮助用户更好地理解模型的决策过程。
- 扩展和定制:OmniXAI 设计灵活,用户可以根据需要添加新的解释方法或定制现有的解释方法。
4. 典型生态项目
OmniXAI 可以与其他开源项目结合使用,以增强其功能和应用范围。以下是一些典型的生态项目:
- BentoML:用于模型部署和服务的开源框架,可以与 OmniXAI 结合,将解释器部署到生产环境中。
- Scikit-learn:用于传统机器学习的库,OmniXAI 可以解释 Scikit-learn 中的模型。
- PyTorch/TensorFlow:用于深度学习的库,OmniXAI 可以解释这些库中的模型,并提供基于梯度的解释方法。
通过结合这些生态项目,OmniXAI 可以更好地满足不同场景下的需求,提供更全面和强大的可解释 AI 解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26