GPyTorch中标准化输出与标准差逆变换的技术解析
2025-06-19 12:32:22作者:董宙帆
概述
在使用GPyTorch进行高斯过程建模时,数据标准化是一个常见的预处理步骤。然而,许多开发者在处理标准化后的输出及其不确定性时,容易遇到一些技术陷阱。本文将深入探讨这一问题,并提供正确的解决方案。
标准化处理的基本原理
在机器学习中,标准化(Standardization)通常指将数据转换为均值为0、标准差为1的分布。这一过程可以显著提高模型的训练效果和收敛速度。对于高斯过程模型而言,标准化输出尤为重要,因为它能帮助模型更好地学习数据的模式。
常见错误实践
许多开发者会采用类似以下的方式处理输出数据:
y_scaler = StandardScaler().fit(targets_train_en)
y_train = torch.from_numpy(y_scaler.transform(targets_train_en)).float().squeeze()
然后在预测阶段,不仅对预测均值进行逆变换,还对标准差进行同样的逆变换:
y_pred = y_scaler.inverse_transform(output.reshape(-1, 1))
y_std = y_scaler.inverse_transform(output_std.reshape(-1, 1))
这种做法会导致标准差估计出现严重偏差,因为StandardScaler的逆变换不仅会应用缩放因子,还会重新加上原始均值。
正确处理方法
对于预测均值,确实需要进行完整的逆变换。但对于标准差,只需要应用缩放因子,而不应该加上均值。正确的做法应该是:
y_pred = y_scaler.inverse_transform(output.reshape(-1, 1))
# 仅应用标准差缩放,不加上均值
y_std = output_std * y_scaler.scale_
GPyTorch与标准化集成
虽然GPyTorch本身不直接提供类似scikit-learn中normalize_y的内置功能,但可以通过以下方式实现类似效果:
- 手动实现标准化层
- 使用BoTorch提供的标准化转换工具
- 自定义转换管道
实践建议
- 始终验证标准化处理后的模型行为是否符合预期
- 对于不确定性估计,要特别注意变换的数学性质
- 考虑将标准化参数保存为模型的一部分,便于后续部署
- 在交叉验证中保持标准化参数的一致性
结论
正确处理标准化输出及其不确定性是构建可靠高斯过程模型的关键。理解标准化变换的数学本质,避免对标准差进行不恰当的逆变换,可以显著提高模型预测的质量和可信度。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19