GPyTorch中标准化输出与标准差逆变换的技术解析
2025-06-19 12:32:22作者:董宙帆
概述
在使用GPyTorch进行高斯过程建模时,数据标准化是一个常见的预处理步骤。然而,许多开发者在处理标准化后的输出及其不确定性时,容易遇到一些技术陷阱。本文将深入探讨这一问题,并提供正确的解决方案。
标准化处理的基本原理
在机器学习中,标准化(Standardization)通常指将数据转换为均值为0、标准差为1的分布。这一过程可以显著提高模型的训练效果和收敛速度。对于高斯过程模型而言,标准化输出尤为重要,因为它能帮助模型更好地学习数据的模式。
常见错误实践
许多开发者会采用类似以下的方式处理输出数据:
y_scaler = StandardScaler().fit(targets_train_en)
y_train = torch.from_numpy(y_scaler.transform(targets_train_en)).float().squeeze()
然后在预测阶段,不仅对预测均值进行逆变换,还对标准差进行同样的逆变换:
y_pred = y_scaler.inverse_transform(output.reshape(-1, 1))
y_std = y_scaler.inverse_transform(output_std.reshape(-1, 1))
这种做法会导致标准差估计出现严重偏差,因为StandardScaler的逆变换不仅会应用缩放因子,还会重新加上原始均值。
正确处理方法
对于预测均值,确实需要进行完整的逆变换。但对于标准差,只需要应用缩放因子,而不应该加上均值。正确的做法应该是:
y_pred = y_scaler.inverse_transform(output.reshape(-1, 1))
# 仅应用标准差缩放,不加上均值
y_std = output_std * y_scaler.scale_
GPyTorch与标准化集成
虽然GPyTorch本身不直接提供类似scikit-learn中normalize_y的内置功能,但可以通过以下方式实现类似效果:
- 手动实现标准化层
- 使用BoTorch提供的标准化转换工具
- 自定义转换管道
实践建议
- 始终验证标准化处理后的模型行为是否符合预期
- 对于不确定性估计,要特别注意变换的数学性质
- 考虑将标准化参数保存为模型的一部分,便于后续部署
- 在交叉验证中保持标准化参数的一致性
结论
正确处理标准化输出及其不确定性是构建可靠高斯过程模型的关键。理解标准化变换的数学本质,避免对标准差进行不恰当的逆变换,可以显著提高模型预测的质量和可信度。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355