Argo Rollouts 中 Datadog 指标查询 404 错误分析与解决方案
问题背景
在使用 Argo Rollouts 进行渐进式部署时,许多团队会依赖 Datadog 提供的监控指标作为金丝雀发布的分析依据。近期有用户报告,在升级到 v1.7.0-rc1 版本后,AnalysisTemplate 中使用 Datadog 提供商的查询开始频繁出现 404 错误,导致部署流程无法正常完成。
错误现象
当 Rollout 资源执行到分析阶段时,Datadog 查询会返回以下错误信息:
received non 2xx response code: 404 {"errors":["Not found"]}
这种错误会导致分析步骤失败,进而阻止整个部署流程的完成。值得注意的是,这个问题在 v1.6.6 版本中仅偶尔出现,但在 v1.7.0-rc1 中变得更为频繁。
问题分析
通过深入调查,我们发现这个问题与 Argo Rollouts 中 Datadog 提供商 API 版本的处理方式有关。在 v1.7.0 版本中,一个重要的变更是将默认 API 版本从代码中移出,改为通过安装清单(install.yaml)进行配置。
关键点在于:
- 当 apiVersion 参数未明确设置时,系统可能会构造 v2 版本的请求
- 但实际路由仍在使用 v1 版本的 API 端点
- 这种版本不匹配导致了 404 错误响应
解决方案
要解决这个问题,需要确保 Datadog 提供商的 API 版本配置正确:
-
更新安装清单:确保在升级到 v1.7.0 或更高版本时,同时更新 install.yaml 文件,包含正确的 API 版本配置。
-
明确指定 API 版本:在 AnalysisTemplate 中显式设置 Datadog 提供商的 apiVersion 参数,避免依赖默认值。
-
完整部署流程:注意在更改配置后,需要进行全新的部署,简单的回滚或同步可能无法完全解决问题。
最佳实践建议
为了避免类似问题,我们建议:
-
版本升级时检查变更日志:特别是涉及外部服务集成的变更。
-
测试环境先行:在生产环境部署前,先在测试环境中验证新版本的兼容性。
-
明确配置优于隐式默认:对于关键配置如 API 版本,建议显式声明而非依赖默认值。
-
监控部署过程:设置适当的告警机制,及时发现分析步骤中的异常。
总结
Argo Rollouts 与 Datadog 的集成为渐进式部署提供了强大的监控能力,但版本升级时的配置变更需要特别注意。通过理解 API 版本管理机制并遵循明确的配置实践,可以避免类似 404 错误的发生,确保部署流程的顺畅进行。
对于已经遇到此问题的团队,按照上述解决方案更新配置后,应该能够恢复正常功能。未来版本中,Argo Rollouts 团队也可能会进一步优化默认配置的处理逻辑,减少此类问题的发生概率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00