Higress AI工作流插件ai-workflow的设计与实现
2025-06-09 17:24:29作者:羿妍玫Ivan
引言
在现代AI应用开发中,RAG(检索增强生成)和ReAct风格的Agent等模式已经成为常见架构。这些应用通常需要编排多个API调用,构建复杂的工作流。传统实现方式需要为每个场景单独开发,不仅效率低下,也难以灵活调整。Higress社区推出的ai-workflow插件正是为了解决这一问题而生。
核心设计理念
ai-workflow插件的核心思想是将工作流抽象为有向无环图(DAG),通过声明式配置定义执行流程。这种设计带来了三大优势:
- 解耦性:将流程控制与具体业务逻辑分离
- 灵活性:通过修改配置即可调整工作流,无需重新编译部署
- 复用性:通用工作流引擎可支持多种AI应用场景
架构设计详解
工作流模型
插件采用经典的DAG模型,包含两种核心元素:
- 节点(Node):代表具体执行单元,封装了HTTP请求能力
- 边(Edge):定义执行路径和条件分支
控制流机制
工作流执行遵循以下规则:
- 条件分支:通过
conditional字段定义布尔表达式,决定是否执行该分支 - 终止条件:
end:终止工作流并返回结果continue:放行请求到下一个插件
- 并行执行:支持多个无依赖节点的并行调用
条件表达式支持六种比较操作:
- 等于(eq)
- 不等于(ne)
- 小于(lt)
- 小于等于(le)
- 大于(gt)
- 大于等于(ge)
数据流处理
插件实现了强大的数据流转能力:
- 上下文存储:每个节点的执行结果以节点名为key存入上下文
- 数据提取:采用GJSON PATH语法从JSON响应中提取特定字段
- 模板渲染:支持通过模板构造请求体,实现动态请求生成
数据引用采用{{node||path}}格式,其中:
node指定数据来源节点path是GJSON路径表达式
配置详解
节点配置
每个节点代表一个API调用,主要配置项包括:
- 基础信息:名称、服务地址、路径等
- 请求构造:方法、头信息、请求体模板
- 数据映射:定义如何从上游数据构造当前请求
请求体支持两种构造方式:
- 直接使用
service_body_tmpl作为固定请求体 - 通过
service_body_replace_keys实现动态模板填充
边配置
边配置定义执行路径,关键属性:
- 源节点(source):可以是起始点(start)或任意节点
- 目标节点(target):可以是结束标志或节点
- 执行条件(conditional):可选的条件表达式
典型应用场景
RAG流程实现
通过配置多节点工作流,可以轻松实现:
- 查询嵌入(Embedding)
- 向量检索
- 结果精炼
- 最终生成
复杂决策流程
利用条件分支,可以实现:
- 缓存检查
- 回退机制
- 多路验证
最佳实践示例
以下是一个完整的工作流配置示例,展示了多节点并行执行与条件分支:
workflow:
edges:
- source: start
target: embedding
- source: embedding
target: retrieval
- source: retrieval
target: llm_generate
- source: llm_generate
target: end
conditional: "gt {{llm_generate||confidence}} 0.8"
- source: llm_generate
target: fallback
conditional: "le {{llm_generate||confidence}} 0.8"
nodes:
- name: embedding
# 嵌入服务配置
service_method: POST
service_path: "/embeddings"
service_body_replace_keys:
- from: "start||query"
to: "text"
- name: retrieval
# 检索服务配置
service_method: POST
service_path: "/search"
service_body_replace_keys:
- from: "embedding||vector"
to: "query_vector"
- name: llm_generate
# LLM生成配置
service_method: POST
service_path: "/generate"
service_body_replace_keys:
- from: "retrieval||results"
to: "context"
- name: fallback
# 回退逻辑配置
service_method: POST
service_path: "/fallback"
性能考量
- 并行优化:无依赖节点自动并行执行
- 短路评估:条件不满足时跳过分支执行
- 资源复用:保持HTTP连接池
扩展性设计
- 自定义函数:未来可支持用户自定义条件函数
- 插件组合:可与其他Higress插件协同工作
- 监控集成:支持工作流执行指标导出
总结
Higress的ai-workflow插件通过声明式配置实现了复杂的API工作流编排,极大简化了AI应用的开发流程。其核心价值在于:
- 降低开发复杂度,提升迭代效率
- 增强系统灵活性,支持快速调整
- 提高代码复用率,减少重复开发
对于需要构建复杂AI工作流的团队,这一插件提供了优雅的解决方案,是Higress生态中面向AI场景的重要增强。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
开源电子设计自动化利器:KiCad EDA全方位使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
267
2.54 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
Ascend Extension for PyTorch
Python
98
126
暂无简介
Dart
556
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
54
11
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
604
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1