Higress AI工作流插件ai-workflow的设计与实现
2025-06-09 16:48:30作者:羿妍玫Ivan
引言
在现代AI应用开发中,RAG(检索增强生成)和ReAct风格的Agent等模式已经成为常见架构。这些应用通常需要编排多个API调用,构建复杂的工作流。传统实现方式需要为每个场景单独开发,不仅效率低下,也难以灵活调整。Higress社区推出的ai-workflow插件正是为了解决这一问题而生。
核心设计理念
ai-workflow插件的核心思想是将工作流抽象为有向无环图(DAG),通过声明式配置定义执行流程。这种设计带来了三大优势:
- 解耦性:将流程控制与具体业务逻辑分离
- 灵活性:通过修改配置即可调整工作流,无需重新编译部署
- 复用性:通用工作流引擎可支持多种AI应用场景
架构设计详解
工作流模型
插件采用经典的DAG模型,包含两种核心元素:
- 节点(Node):代表具体执行单元,封装了HTTP请求能力
- 边(Edge):定义执行路径和条件分支
控制流机制
工作流执行遵循以下规则:
- 条件分支:通过
conditional字段定义布尔表达式,决定是否执行该分支 - 终止条件:
end:终止工作流并返回结果continue:放行请求到下一个插件
- 并行执行:支持多个无依赖节点的并行调用
条件表达式支持六种比较操作:
- 等于(eq)
- 不等于(ne)
- 小于(lt)
- 小于等于(le)
- 大于(gt)
- 大于等于(ge)
数据流处理
插件实现了强大的数据流转能力:
- 上下文存储:每个节点的执行结果以节点名为key存入上下文
- 数据提取:采用GJSON PATH语法从JSON响应中提取特定字段
- 模板渲染:支持通过模板构造请求体,实现动态请求生成
数据引用采用{{node||path}}格式,其中:
node指定数据来源节点path是GJSON路径表达式
配置详解
节点配置
每个节点代表一个API调用,主要配置项包括:
- 基础信息:名称、服务地址、路径等
- 请求构造:方法、头信息、请求体模板
- 数据映射:定义如何从上游数据构造当前请求
请求体支持两种构造方式:
- 直接使用
service_body_tmpl作为固定请求体 - 通过
service_body_replace_keys实现动态模板填充
边配置
边配置定义执行路径,关键属性:
- 源节点(source):可以是起始点(start)或任意节点
- 目标节点(target):可以是结束标志或节点
- 执行条件(conditional):可选的条件表达式
典型应用场景
RAG流程实现
通过配置多节点工作流,可以轻松实现:
- 查询嵌入(Embedding)
- 向量检索
- 结果精炼
- 最终生成
复杂决策流程
利用条件分支,可以实现:
- 缓存检查
- 回退机制
- 多路验证
最佳实践示例
以下是一个完整的工作流配置示例,展示了多节点并行执行与条件分支:
workflow:
edges:
- source: start
target: embedding
- source: embedding
target: retrieval
- source: retrieval
target: llm_generate
- source: llm_generate
target: end
conditional: "gt {{llm_generate||confidence}} 0.8"
- source: llm_generate
target: fallback
conditional: "le {{llm_generate||confidence}} 0.8"
nodes:
- name: embedding
# 嵌入服务配置
service_method: POST
service_path: "/embeddings"
service_body_replace_keys:
- from: "start||query"
to: "text"
- name: retrieval
# 检索服务配置
service_method: POST
service_path: "/search"
service_body_replace_keys:
- from: "embedding||vector"
to: "query_vector"
- name: llm_generate
# LLM生成配置
service_method: POST
service_path: "/generate"
service_body_replace_keys:
- from: "retrieval||results"
to: "context"
- name: fallback
# 回退逻辑配置
service_method: POST
service_path: "/fallback"
性能考量
- 并行优化:无依赖节点自动并行执行
- 短路评估:条件不满足时跳过分支执行
- 资源复用:保持HTTP连接池
扩展性设计
- 自定义函数:未来可支持用户自定义条件函数
- 插件组合:可与其他Higress插件协同工作
- 监控集成:支持工作流执行指标导出
总结
Higress的ai-workflow插件通过声明式配置实现了复杂的API工作流编排,极大简化了AI应用的开发流程。其核心价值在于:
- 降低开发复杂度,提升迭代效率
- 增强系统灵活性,支持快速调整
- 提高代码复用率,减少重复开发
对于需要构建复杂AI工作流的团队,这一插件提供了优雅的解决方案,是Higress生态中面向AI场景的重要增强。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
189
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92