Sentence-Transformers项目中的2D Matryoshka嵌入技术解析
背景介绍
Sentence-Transformers是一个用于生成高质量句子嵌入的开源项目。近期,一种名为2D Matryoshka(二维套娃)的新技术引起了开发者的关注。这项技术源自一篇名为《2D Matryoshka Sentence Embeddings》的研究论文,它扩展了原有的Matryoshka表示学习(MRL)方法,使其不仅能够适应不同维度的嵌入表示,还能适应不同深度的网络层输出。
技术原理
2D Matryoshka技术的核心思想是在训练过程中同时考虑两个维度的适应性:
-
嵌入维度适应性:这是原始MRL技术的特点,允许模型生成不同维度的嵌入表示,从完整维度到逐渐缩减的维度。
-
网络深度适应性:新技术增加的特性,使模型能够利用不同深度的网络层输出作为最终表示。
在训练过程中,2D Matryoshka采用以下策略:
- 在每个训练步骤中,除了计算最终层的损失外,还会随机选择一个中间层计算损失
- 添加KL散度损失项,使中间层表示尽可能接近最终层表示
- 所有损失项加权求和作为最终优化目标
实现方案讨论
在Sentence-Transformers项目中,开发者们对如何实现这一技术进行了深入讨论,提出了几种设计方案:
-
模块化设计:建议将层适应性功能实现为一个独立的
AdaptiveLayerLoss模块,它可以包装任何基础损失函数。这种设计提供了更好的灵活性,允许用户单独使用层适应性功能,而不必与维度适应性绑定。 -
组合式实现:通过继承关系,可以创建
Matryoshka2DLoss类,它组合了维度适应性和层适应性两种功能。 -
训练策略选择:讨论了是应该随机采样单层计算损失,还是使用所有中间层计算损失。实验表明,使用所有层可能获得更好的性能。
实验发现
初步实验揭示了一些有趣的现象:
- KL散度损失项在实际实现中可能不利于模型性能,这与论文预期有所出入
- 使用所有中间层计算损失比随机采样单层效果更好
- 加权平均各层损失的方法能够更好地保持最终层的性能
技术应用价值
2D Matryoshka技术的应用价值主要体现在:
-
推理效率优化:用户可以根据实际需求选择使用较浅的网络层或较低维度的嵌入表示,显著提高推理速度。
-
资源适应性:使单一模型能够适应从资源受限设备到高性能服务器的各种部署环境。
-
训练灵活性:为模型训练提供了新的正则化手段,可能有助于学习更鲁棒的表示。
未来方向
基于当前讨论,该技术的进一步发展方向包括:
- 更精细的损失权重调整策略
- 层选择策略的优化研究
- 与其他先进训练技术的结合
- 在不同架构和任务上的泛化性验证
这项技术的集成将使Sentence-Transformers项目在效率和灵活性方面迈上新台阶,为用户提供更强大的句子嵌入生成能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00