逻辑回归模型实践指南:基于GenTang/intro_ds项目的收入预测分析
2025-06-29 09:33:29作者:魏献源Searcher
引言
逻辑回归是机器学习中最基础也是最常用的分类算法之一。本文将通过GenTang/intro_ds项目中的实际案例,详细介绍如何使用Python实现逻辑回归模型,并分析其统计性质。我们将以收入预测为应用场景,展示从数据探索到模型评估的完整流程。
数据准备与探索
数据加载与预处理
首先,我们需要加载并预处理数据。项目中使用的数据集包含以下关键特征:
- 年龄(age)
- 教育年限(education_num)
- 资本收益(capital_gain)
- 资本损失(capital_loss)
- 每周工作时间(hours_per_week)
- 收入标签(label,分为">50K"和"<=50K"两类)
def readData(path):
data = pd.read_csv(path)
cols = ["age", "education_num", "capital_gain", "capital_loss", "hours_per_week", "label"]
return data[cols]
数据可视化
在建模前,我们需要对数据进行初步探索。通过直方图可以直观了解各变量的分布情况:
def visualData(data):
data[["age", "hours_per_week", "education_num", "label_code"]].hist(
rwidth=0.9, grid=False, figsize=(8, 8), alpha=0.6, color="grey")
plt.show()
交叉分析
通过交叉报表分析变量间的关系:
def analyseData(data):
# 计算education_num与label的交叉报表
cross1 = pd.crosstab(pd.qcut(data["education_num"], [0, .25, .5, .75, 1]), data["label"])
# 计算hours_per_week与label的交叉报表(归一化)
cross2 = pd.crosstab(pd.cut(data["hours_per_week"], 5), data["label"])
cross2_norm = cross2.div(cross2.sum(1).astype(float), axis=0)
逻辑回归模型构建
模型训练
使用statsmodels库构建逻辑回归模型:
def trainModel(data):
formula = "label_code ~ age + education_num + capital_gain + capital_loss + hours_per_week"
model = sm.Logit.from_formula(formula, data=data)
re = model.fit()
return re
模型统计性质分析
训练完成后,我们可以分析模型的统计性质:
def modelSummary(re):
# 输出整体统计结果
print(re.summary())
# 检验特定系数是否显著
print(re.f_test("education_num=0"))
print(re.f_test("education_num=0.32, hours_per_week=0.04"))
模型解释
理解模型结果的关键指标:
def interpretModel(re):
# 计算优势比(Odds Ratio)
conf = re.conf_int()
conf['OR'] = re.params
print(np.exp(conf))
# 计算边际效应
print(re.get_margeff(at="overall").summary())
模型预测与评估
预测实现
def makePrediction(re, testSet, alpha=0.5):
testSet["prob"] = re.predict(testSet)
testSet["pred"] = testSet.apply(lambda x: 1 if x["prob"] > alpha else 0, axis=1)
return testSet
性能评估
使用查准率、查全率和F1分数评估模型:
def evaluation(re):
bins = np.array([0, 0.5, 1])
label = re["label_code"]
pred = re["pred"]
tn, fp, fn, tp = np.histogram2d(label, pred, bins=bins)[0].flatten()
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2 * precision * recall / (precision + recall)
完整流程整合
将所有步骤整合为一个完整的分析流程:
def logitRegression(data):
data = transLabel(data)
visualData(data)
analyseData(data)
trainSet, testSet = train_test_split(data, test_size=0.2, random_state=2310)
re = trainModel(trainSet)
modelSummary(re)
interpretModel(re)
re = makePrediction(re, testSet)
evaluation(re)
关键知识点总结
-
优势比(Odds Ratio):表示自变量每增加一个单位,事件发生比的变化倍数。大于1表示正相关,小于1表示负相关。
-
边际效应:表示自变量变化一个单位对预测概率的直接影响,比回归系数更直观。
-
模型评估指标:
- 查准率(Precision):预测为正的样本中实际为正的比例
- 查全率(Recall):实际为正的样本中被正确预测的比例
- F1分数:查准率和查全率的调和平均数
-
统计检验:通过F检验可以验证特定系数是否显著,或者多个系数是否同时满足特定假设。
实际应用建议
-
在实际应用中,可以尝试调整分类阈值(alpha参数),在查准率和查全率之间寻找平衡。
-
对于类别不平衡问题,可以考虑使用加权逻辑回归或采样技术。
-
逻辑回归模型的可解释性强,适合需要理解变量影响的业务场景。
通过本文的完整示例,读者可以掌握逻辑回归从数据探索到模型评估的全过程,为实际业务问题提供数据驱动的解决方案。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896