逻辑回归模型实践指南:基于GenTang/intro_ds项目的收入预测分析
2025-06-29 15:53:10作者:魏献源Searcher
引言
逻辑回归是机器学习中最基础也是最常用的分类算法之一。本文将通过GenTang/intro_ds项目中的实际案例,详细介绍如何使用Python实现逻辑回归模型,并分析其统计性质。我们将以收入预测为应用场景,展示从数据探索到模型评估的完整流程。
数据准备与探索
数据加载与预处理
首先,我们需要加载并预处理数据。项目中使用的数据集包含以下关键特征:
- 年龄(age)
- 教育年限(education_num)
- 资本收益(capital_gain)
- 资本损失(capital_loss)
- 每周工作时间(hours_per_week)
- 收入标签(label,分为">50K"和"<=50K"两类)
def readData(path):
data = pd.read_csv(path)
cols = ["age", "education_num", "capital_gain", "capital_loss", "hours_per_week", "label"]
return data[cols]
数据可视化
在建模前,我们需要对数据进行初步探索。通过直方图可以直观了解各变量的分布情况:
def visualData(data):
data[["age", "hours_per_week", "education_num", "label_code"]].hist(
rwidth=0.9, grid=False, figsize=(8, 8), alpha=0.6, color="grey")
plt.show()
交叉分析
通过交叉报表分析变量间的关系:
def analyseData(data):
# 计算education_num与label的交叉报表
cross1 = pd.crosstab(pd.qcut(data["education_num"], [0, .25, .5, .75, 1]), data["label"])
# 计算hours_per_week与label的交叉报表(归一化)
cross2 = pd.crosstab(pd.cut(data["hours_per_week"], 5), data["label"])
cross2_norm = cross2.div(cross2.sum(1).astype(float), axis=0)
逻辑回归模型构建
模型训练
使用statsmodels库构建逻辑回归模型:
def trainModel(data):
formula = "label_code ~ age + education_num + capital_gain + capital_loss + hours_per_week"
model = sm.Logit.from_formula(formula, data=data)
re = model.fit()
return re
模型统计性质分析
训练完成后,我们可以分析模型的统计性质:
def modelSummary(re):
# 输出整体统计结果
print(re.summary())
# 检验特定系数是否显著
print(re.f_test("education_num=0"))
print(re.f_test("education_num=0.32, hours_per_week=0.04"))
模型解释
理解模型结果的关键指标:
def interpretModel(re):
# 计算优势比(Odds Ratio)
conf = re.conf_int()
conf['OR'] = re.params
print(np.exp(conf))
# 计算边际效应
print(re.get_margeff(at="overall").summary())
模型预测与评估
预测实现
def makePrediction(re, testSet, alpha=0.5):
testSet["prob"] = re.predict(testSet)
testSet["pred"] = testSet.apply(lambda x: 1 if x["prob"] > alpha else 0, axis=1)
return testSet
性能评估
使用查准率、查全率和F1分数评估模型:
def evaluation(re):
bins = np.array([0, 0.5, 1])
label = re["label_code"]
pred = re["pred"]
tn, fp, fn, tp = np.histogram2d(label, pred, bins=bins)[0].flatten()
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2 * precision * recall / (precision + recall)
完整流程整合
将所有步骤整合为一个完整的分析流程:
def logitRegression(data):
data = transLabel(data)
visualData(data)
analyseData(data)
trainSet, testSet = train_test_split(data, test_size=0.2, random_state=2310)
re = trainModel(trainSet)
modelSummary(re)
interpretModel(re)
re = makePrediction(re, testSet)
evaluation(re)
关键知识点总结
-
优势比(Odds Ratio):表示自变量每增加一个单位,事件发生比的变化倍数。大于1表示正相关,小于1表示负相关。
-
边际效应:表示自变量变化一个单位对预测概率的直接影响,比回归系数更直观。
-
模型评估指标:
- 查准率(Precision):预测为正的样本中实际为正的比例
- 查全率(Recall):实际为正的样本中被正确预测的比例
- F1分数:查准率和查全率的调和平均数
-
统计检验:通过F检验可以验证特定系数是否显著,或者多个系数是否同时满足特定假设。
实际应用建议
-
在实际应用中,可以尝试调整分类阈值(alpha参数),在查准率和查全率之间寻找平衡。
-
对于类别不平衡问题,可以考虑使用加权逻辑回归或采样技术。
-
逻辑回归模型的可解释性强,适合需要理解变量影响的业务场景。
通过本文的完整示例,读者可以掌握逻辑回归从数据探索到模型评估的全过程,为实际业务问题提供数据驱动的解决方案。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92