Gymnasium项目中Atari环境RAM观测值异常问题分析
2025-05-26 11:11:26作者:裘旻烁
问题现象
在使用Gymnasium项目中的Atari环境时,开发者发现了一个关于RAM观测值的异常现象。当选择以RAM作为观测类型时,观测值始终返回一个固定值63,而不是预期的动态变化的内存状态。
技术背景
Atari游戏环境通常提供两种观测模式:
- 图像模式:返回游戏屏幕的像素图像
- RAM模式:返回游戏内部128字节的内存状态
RAM模式对于某些强化学习算法特别有用,因为它直接暴露了游戏内部的状态信息,而不需要从像素图像中提取特征。
问题复现
通过以下简单代码可以复现该问题:
import numpy as np
import gymnasium as gym
env = gym.make("ALE/Breakout-v5", obs_type="ram")
env.reset()
for step in range(10):
action = env.action_space.sample()
observation, reward, terminated, truncated, info = env.step(action)
print(step, action, observation.shape, np.unique(observation))
输出结果显示,无论执行什么动作,RAM观测值始终为63的重复值,这显然不符合预期。
问题根源
经过项目维护者的调查,发现这个问题与NumPy 2.0版本有关。在NumPy 2.0中,某些数据类型处理或内存访问方式发生了变化,导致Arcade Learning Environment(ALE)底层无法正确读取游戏内存状态。
解决方案
目前推荐的临时解决方案是降级NumPy版本:
pip install numpy<2
这将安装NumPy 1.x系列的最新版本,避免与ALE的兼容性问题。
技术影响
这个问题对于依赖RAM观测值的强化学习研究和应用有较大影响。RAM观测值通常包含游戏内部状态的关键信息,如玩家位置、敌人状态、游戏分数等。固定不变的观测值会导致:
- 强化学习算法无法感知环境状态变化
- 训练过程无法收敛
- 评估结果失真
长期解决方案
项目维护团队已经在相关代码库中创建了issue跟踪此问题。长期解决方案可能包括:
- 更新ALE底层代码以适应NumPy 2.0的变化
- 提供更明确的版本兼容性说明
- 改进错误检测机制,在出现异常观测值时提供更有用的警告信息
最佳实践建议
对于使用Gymnasium Atari环境的开发者,建议:
- 在关键项目中使用固定版本的依赖库
- 实现观测值的合理性检查
- 考虑同时支持图像和RAM两种观测模式,提高系统鲁棒性
- 关注项目更新,及时获取问题修复信息
这个问题提醒我们,在科学计算和机器学习项目中,底层数值计算库的版本变化可能会带来意想不到的兼容性问题,需要特别注意依赖管理。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878