Hydro项目ACM赛制比赛结果导出问题分析与解决方案
问题背景
在ACM国际大学生程序设计竞赛(ICPC)及其类似赛制的比赛中,比赛结果的准确性和实时展示至关重要。Hydro作为一个在线评测系统,在处理ACM赛制比赛时,需要将比赛结果导出为Ghost文件格式用于滚榜展示。然而,当前实现中存在一个关键问题:系统在生成Ghost文件时未能正确区分不同类型的错误提交,特别是将编译错误(CE)与其他错误(如答案错误WA)混为一谈,导致滚榜时的罚时计算出现偏差。
技术细节分析
ACM赛制罚时规则
在ACM赛制中,每支队伍的最终排名由以下两个因素决定:
- 解题数量:队伍正确解答的题目数量
- 总罚时:所有已解出题目的提交时间之和加上错误提交带来的额外罚时
其中,错误提交的罚时规则是:每道题目在首次正确解答前的每次错误提交都会为该题目增加20分钟罚时。但需要注意的是,编译错误(CE)通常不计入罚时,这是ACM赛制的一个重要规则。
Ghost文件格式问题
Hydro系统当前在导出Ghost文件时,将所有非AC(正确解答)的提交统一标记为RJ(Rejected),这导致:
- 编译错误(CE)被错误地归类为RJ
- 滚榜程序无法区分真正的错误提交(WA等)和编译错误
- 最终计算的总罚时比实际值偏高,因为编译错误也被计入了罚时
影响范围
这个问题会影响所有使用Hydro系统举办ACM赛制比赛并导出Ghost文件进行滚榜的场景,导致:
- 比赛排名可能不准确
- 参赛队伍的罚时显示高于实际值
- 比赛结果的权威性受到影响
解决方案
技术实现方案
要解决这个问题,需要对Hydro系统的Ghost文件导出逻辑进行修改:
-
提交状态细分:在导出Ghost文件时,需要区分不同类型的非AC提交,至少应将编译错误(CE)与其他错误(如WA、TLE等)分开处理。
-
Ghost文件格式扩展:虽然标准Ghost文件格式可能只支持AC/RJ两种状态,但可以通过以下方式之一解决:
- 在RJ状态后附加具体错误类型
- 使用特殊标记表示编译错误
- 修改滚榜程序以识别Hydro特定的扩展格式
-
罚时计算逻辑调整:确保在生成Ghost文件时,编译错误不计入罚时计算。
实现建议
具体实现时可以考虑以下策略:
-
在导出逻辑中添加对提交状态的详细检查,特别是区分编译错误和其他错误。
-
对于确实无法扩展Ghost文件格式的情况,可以在导出前预处理提交数据,将编译错误从罚时计算中排除。
-
在文档中明确说明系统对ACM赛制罚时的处理规则,确保管理员了解系统的行为。
验证与测试
为确保修改的正确性,应设计以下测试用例:
- 包含编译错误的提交序列,验证是否不计入罚时
- 混合编译错误和其他错误的提交序列,验证罚时计算准确性
- 边界情况测试,如仅包含编译错误的提交、编译错误后正确解答等情况
总结
正确处理ACM赛制比赛中的各种提交状态对于保证比赛公平性至关重要。Hydro系统通过修复Ghost文件导出中的提交状态分类问题,能够更准确地反映参赛队伍的实际表现,维护竞赛的公正性。这一改进不仅涉及技术实现细节,也体现了对竞赛规则的深入理解和尊重。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









