Grantlee模板系统扩展指南:自定义标签与过滤器开发
2025-06-11 21:19:34作者:霍妲思
概述
Grantlee是一个基于Qt的模板引擎,它允许开发者通过插件机制扩展模板系统的功能。本文将详细介绍如何在Grantlee中创建自定义过滤器和标签,以及如何将它们打包成可重用的库。
自定义过滤器开发
过滤器是Grantlee模板系统中的基本构建块,它接收一个输入对象和可选参数,处理后返回字符串结果。
基础过滤器实现
要创建自定义过滤器,需要继承Grantlee::Filter类并实现doFilter方法:
class TwiceFilter : public Grantlee::Filter {
QVariant dofilter(const QVariant &input,
const QVariant &arg = QVariant(),
bool autoescape = false) const override {
auto str = getSafeString(input);
return str + str;
}
bool isSafe() const override { return true; }
};
这个示例过滤器会将输入字符串重复两次输出。在模板中使用方式为:{{ name|twice }}
带参数的过滤器
过滤器可以接收参数实现更复杂的功能:
class RepeatFilter : public Grantlee::Filter {
QVariant dofilter(const QVariant &input,
const QVariant &arg,
bool autoescape) const override {
auto str = getSafeString(input);
if (arg.type() != QMetaType::Int)
return str; // 优雅处理错误
for (int i = 0; i < arg.toInt(); ++i) {
str.get().append(str);
}
return str;
}
bool isSafe() const override { return true; }
};
使用示例:{{ name|repeat:"3" }}会输出输入字符串3次。
错误处理最佳实践
过滤器应该优雅处理所有错误情况,而不是抛出异常。当参数无效时,返回原始输入或空字符串是推荐的做法。
自动转义与安全性
Grantlee提供了自动转义功能来防止XSS攻击,过滤器开发者需要考虑输出内容的安全性。
isSafe()方法:指示过滤器是否安全(即不会引入不安全内容)autoescape参数:反映当前模板的自动转义状态
安全过滤器应该始终返回true,表示它们不会引入需要转义的内容。
自定义标签开发
标签比过滤器更强大,可以控制模板的解析和渲染流程。
简单标签实现
创建自定义标签需要两个步骤:
- 继承
Grantlee::AbstractNodeFactory实现工厂类 - 继承
Grantlee::Node实现节点类
class CurrentTimeNode : public Grantlee::Node {
public:
void render(Grantlee::OutputStream *stream,
Grantlee::Context *c) const override {
(*stream) << QDateTime::currentDateTime().toString();
}
};
class CurrentTimeTagFactory : public Grantlee::AbstractNodeFactory {
Grantlee::Node *getNode(const QString &tagContent,
Grantlee::Parser *p) const override {
QStringList parts = smartSplit(tagContent);
parts.removeFirst(); // 移除标签名
if (!parts.isEmpty())
throw Grantlee::Exception(Grantlee::TagSyntaxError,
"current_time不接受参数");
return new CurrentTimeNode();
}
};
带结束标签的复杂标签
许多标签需要开始和结束标记,如if、for等。这类标签需要解析中间内容:
Node* IfNodeFactory::getNode(const QString &tagContent, Parser *p) const {
QStringList parts = smartSplit(tagContent);
parts.removeFirst(); // 移除"if"
auto argsList = getFilterExpressionList(parts);
auto node = new IfNode(argsList, p);
// 解析直到遇到else或endif
auto trueList = p->parse(node, QStringList{"else", "endif"});
node->setTrueList(trueList);
auto nextToken = p->takeNextToken();
if (nextToken.content == "else") {
auto falseList = p->parse(node, "endif");
node->setFalseList(falseList);
p->removeNextToken(); // 跳过endif标签
}
return node;
}
这种模式可以扩展到支持多个中间标记,如elif等。
创建插件库
要使自定义标签和过滤器可用,需要将它们打包为Qt插件:
class MyLibrary : public QObject, public Grantlee::TagLibraryInterface {
Q_OBJECT
Q_INTERFACES(Grantlee::TagLibraryInterface)
public:
MyLibrary(QObject *parent = 0) : QObject(parent) {
m_nodeFactories.insert("mytag", new MyNodeFactory());
m_filters.insert("myfilter", new MyFilter());
}
QHash<QString, Grantlee::AbstractNodeFactory*> nodeFactories() {
return m_nodeFactories;
}
QHash<QString, Grantlee::Filter*> filters() {
return m_filters;
}
};
JavaScript扩展
Grantlee还支持使用JavaScript编写标签和过滤器,这为模板设计者提供了更大的灵活性。
var EchoNode = function(content) {
this.content = content;
this.render = function(context) {
return content.join(" ");
};
};
function EchoNodeFactory(tagContent, parser) {
var content = tagContent.split(" ");
content = content.slice(1, content.length);
return new Node("EchoNode", content);
};
EchoNodeFactory.tagName = "echo";
Library.addFactory("EchoNodeFactory");
JavaScript扩展的关键点:
- 使用
Library全局对象注册工厂 - 工厂函数返回
Node对象 - 节点必须实现
render方法
总结
Grantlee的扩展系统提供了强大的自定义能力,无论是通过C++还是JavaScript。理解过滤器和标签的工作原理,以及如何正确处理自动转义和安全问题,是开发高质量扩展的关键。通过创建可重用的插件库,可以在多个项目中共享自定义模板功能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143