Grantlee模板系统扩展指南:自定义标签与过滤器开发
2025-06-11 09:22:09作者:霍妲思
概述
Grantlee是一个基于Qt的模板引擎,它允许开发者通过插件机制扩展模板系统的功能。本文将详细介绍如何在Grantlee中创建自定义过滤器和标签,以及如何将它们打包成可重用的库。
自定义过滤器开发
过滤器是Grantlee模板系统中的基本构建块,它接收一个输入对象和可选参数,处理后返回字符串结果。
基础过滤器实现
要创建自定义过滤器,需要继承Grantlee::Filter
类并实现doFilter
方法:
class TwiceFilter : public Grantlee::Filter {
QVariant dofilter(const QVariant &input,
const QVariant &arg = QVariant(),
bool autoescape = false) const override {
auto str = getSafeString(input);
return str + str;
}
bool isSafe() const override { return true; }
};
这个示例过滤器会将输入字符串重复两次输出。在模板中使用方式为:{{ name|twice }}
带参数的过滤器
过滤器可以接收参数实现更复杂的功能:
class RepeatFilter : public Grantlee::Filter {
QVariant dofilter(const QVariant &input,
const QVariant &arg,
bool autoescape) const override {
auto str = getSafeString(input);
if (arg.type() != QMetaType::Int)
return str; // 优雅处理错误
for (int i = 0; i < arg.toInt(); ++i) {
str.get().append(str);
}
return str;
}
bool isSafe() const override { return true; }
};
使用示例:{{ name|repeat:"3" }}
会输出输入字符串3次。
错误处理最佳实践
过滤器应该优雅处理所有错误情况,而不是抛出异常。当参数无效时,返回原始输入或空字符串是推荐的做法。
自动转义与安全性
Grantlee提供了自动转义功能来防止XSS攻击,过滤器开发者需要考虑输出内容的安全性。
isSafe()
方法:指示过滤器是否安全(即不会引入不安全内容)autoescape
参数:反映当前模板的自动转义状态
安全过滤器应该始终返回true
,表示它们不会引入需要转义的内容。
自定义标签开发
标签比过滤器更强大,可以控制模板的解析和渲染流程。
简单标签实现
创建自定义标签需要两个步骤:
- 继承
Grantlee::AbstractNodeFactory
实现工厂类 - 继承
Grantlee::Node
实现节点类
class CurrentTimeNode : public Grantlee::Node {
public:
void render(Grantlee::OutputStream *stream,
Grantlee::Context *c) const override {
(*stream) << QDateTime::currentDateTime().toString();
}
};
class CurrentTimeTagFactory : public Grantlee::AbstractNodeFactory {
Grantlee::Node *getNode(const QString &tagContent,
Grantlee::Parser *p) const override {
QStringList parts = smartSplit(tagContent);
parts.removeFirst(); // 移除标签名
if (!parts.isEmpty())
throw Grantlee::Exception(Grantlee::TagSyntaxError,
"current_time不接受参数");
return new CurrentTimeNode();
}
};
带结束标签的复杂标签
许多标签需要开始和结束标记,如if
、for
等。这类标签需要解析中间内容:
Node* IfNodeFactory::getNode(const QString &tagContent, Parser *p) const {
QStringList parts = smartSplit(tagContent);
parts.removeFirst(); // 移除"if"
auto argsList = getFilterExpressionList(parts);
auto node = new IfNode(argsList, p);
// 解析直到遇到else或endif
auto trueList = p->parse(node, QStringList{"else", "endif"});
node->setTrueList(trueList);
auto nextToken = p->takeNextToken();
if (nextToken.content == "else") {
auto falseList = p->parse(node, "endif");
node->setFalseList(falseList);
p->removeNextToken(); // 跳过endif标签
}
return node;
}
这种模式可以扩展到支持多个中间标记,如elif
等。
创建插件库
要使自定义标签和过滤器可用,需要将它们打包为Qt插件:
class MyLibrary : public QObject, public Grantlee::TagLibraryInterface {
Q_OBJECT
Q_INTERFACES(Grantlee::TagLibraryInterface)
public:
MyLibrary(QObject *parent = 0) : QObject(parent) {
m_nodeFactories.insert("mytag", new MyNodeFactory());
m_filters.insert("myfilter", new MyFilter());
}
QHash<QString, Grantlee::AbstractNodeFactory*> nodeFactories() {
return m_nodeFactories;
}
QHash<QString, Grantlee::Filter*> filters() {
return m_filters;
}
};
JavaScript扩展
Grantlee还支持使用JavaScript编写标签和过滤器,这为模板设计者提供了更大的灵活性。
var EchoNode = function(content) {
this.content = content;
this.render = function(context) {
return content.join(" ");
};
};
function EchoNodeFactory(tagContent, parser) {
var content = tagContent.split(" ");
content = content.slice(1, content.length);
return new Node("EchoNode", content);
};
EchoNodeFactory.tagName = "echo";
Library.addFactory("EchoNodeFactory");
JavaScript扩展的关键点:
- 使用
Library
全局对象注册工厂 - 工厂函数返回
Node
对象 - 节点必须实现
render
方法
总结
Grantlee的扩展系统提供了强大的自定义能力,无论是通过C++还是JavaScript。理解过滤器和标签的工作原理,以及如何正确处理自动转义和安全问题,是开发高质量扩展的关键。通过创建可重用的插件库,可以在多个项目中共享自定义模板功能。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
981
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
932
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0