VGGT项目:如何导出PLY点云和COLMAP相机格式数据
2025-06-06 18:31:14作者:乔或婵
概述
VGGT是Facebook Research推出的一个强大的视觉几何模型,能够从多视角图像中预测相机位姿、深度图和3D点云。本文将详细介绍如何将VGGT模型的预测结果转换为PLY点云格式和COLMAP相机格式,以便进行后续的三维重建和可视化处理。
VGGT模型输出解析
VGGT模型的predictions字典包含多个关键输出:
- pose_enc:相机位姿编码
- depth:深度图
- world_points:世界坐标系下的3D点云
- world_points_conf:点云置信度
- images:输入图像
其中,pose_enc和world_points是我们需要重点关注的数据,分别对应相机参数和三维点云。
相机参数转换
VGGT提供了pose_encoding_to_extri_intri函数用于将pose_enc转换为相机外参(extrinsic)和内参(intrinsic)矩阵。使用时需要注意:
- 必须提供输入图像的尺寸信息
- 转换后的外参矩阵包含旋转矩阵R和平移向量T
- 内参矩阵基于预测的视场角(FOV)计算得到
典型转换代码如下:
from vggt.utils.pose_enc import pose_encoding_to_extri_intri
# 获取图像尺寸
image_size_hw = images.shape[-2:]
# 转换相机参数
extrinsic, intrinsic = pose_encoding_to_extri_intri(
predictions["pose_enc"],
image_size_hw
)
导出COLMAP相机格式
COLMAP需要以下相机参数文件格式:
- cameras.txt:包含相机内参
- images.txt:包含相机外参和图像名称
对于内参矩阵,COLMAP通常使用针孔相机模型,参数顺序为:fx, fy, cx, cy。我们可以从intrinsic矩阵中提取这些值。
对于外参矩阵,COLMAP使用四元数表示旋转(qw, qx, qy, qz)和三维平移向量(tx, ty, tz)。需要将R矩阵转换为四元数表示。
导出PLY点云
PLY是一种常见的3D点云存储格式。从VGGT的world_points可以轻松导出:
- world_points的形状为(B, H, W, 3),其中B是batch大小
- 需要将点云展平并过滤掉低置信度的点
- 可以选择性地包含RGB颜色信息
典型导出代码如下:
import numpy as np
from plyfile import PlyData, PlyElement
# 获取点云和置信度
points = predictions["world_points"].cpu().numpy()
conf = predictions["world_points_conf"].cpu().numpy()
# 过滤低置信度点并展平
mask = conf > threshold
filtered_points = points[mask]
# 创建PLY元素
vertex = np.array(
[(x, y, z) for x, y, z in filtered_points],
dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')]
)
# 写入PLY文件
PlyData([PlyElement.describe(vertex, 'vertex')]).write('output.ply')
最佳实践建议
- 数据预处理:确保输入图像已经过正确的预处理,包括归一化和尺寸调整
- 置信度过滤:合理设置置信度阈值,平衡点云密度和质量
- 坐标系转换:注意VGGT使用的坐标系约定可能与COLMAP不同,必要时进行转换
- 批量处理:对于大量图像,建议分批处理以避免内存不足
总结
通过VGGT模型,我们可以高效地从多视角图像中获取三维几何信息。将预测结果转换为PLY和COLMAP标准格式后,可以方便地集成到现有的三维重建流程中,或使用各种可视化工具进行展示和分析。掌握这些转换技巧,将大大扩展VGGT在实际项目中的应用范围。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355