X-AnyLabeling项目中如何实现增量式AI预标注
2025-06-08 18:28:25作者:乔或婵
在目标检测任务的数据标注过程中,经常会遇到需要新增检测类别的情况。传统做法往往需要重新标注所有数据,这不仅耗时耗力,还可能导致已有标注信息的丢失。X-AnyLabeling项目提供了基于GroundingDino的AI预标注功能,但默认会覆盖已有标注结果。本文将介绍如何通过修改源码实现增量式预标注,保留已有标注的同时新增类别标注。
增量标注的需求场景
假设我们已经完成了100张图片的基础标注工作,包含了如鼠标、显示器等常见办公物品的标注。现在需要新增"键盘"这一检测类别。理想的工作流程是:
- 保留已有的鼠标、显示器等标注结果
- 仅对键盘这一新增类别进行AI预标注
- 人工校验和修正预标注结果
这种增量式标注方式可以显著提升标注效率,避免重复劳动。
技术实现原理
X-AnyLabeling项目中,GroundingDino预标注功能的默认行为是替换(replace)所有现有标注。要实现增量标注,关键在于修改这一行为模式。
在项目的自动标注服务模块中,GroundingDino相关的实现代码控制着标注结果的写入方式。通过将replace参数设置为False,可以改变标注结果的合并策略,使新标注结果与现有标注共存而非覆盖。
具体实现方法
要实现这一功能,需要定位到项目中的自动标注服务实现文件。在该文件中找到GroundingDino相关的标注结果处理部分,将标注结果写入时的replace参数显式设置为False。
修改后的代码逻辑将:
- 读取现有标注结果
- 执行新增类别的AI预标注
- 将新标注结果与现有标注合并
- 保存合并后的完整标注结果
注意事项
- 类别冲突处理:当新增标注与现有标注在空间上有重叠时,需要根据业务需求决定保留策略
- 性能考虑:增量标注会增加内存使用,在处理大规模数据集时需要注意
- 结果验证:合并后的标注结果需要进行人工校验,确保标注质量
总结
通过简单的参数调整,X-AnyLabeling项目可以支持更加灵活的增量式AI预标注工作流。这种方法特别适合以下场景:
- 逐步扩展检测类别
- 多人协作标注
- 标注标准的迭代更新
这种技术方案不仅提升了标注效率,也更好地保护了已有标注工作的成果,是数据标注工程中的一项实用技巧。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401