VGGT项目中的绝对尺度学习与多视角优化技术探讨
引言
在视觉几何图变换器(VGGT)的研究与应用中,绝对尺度估计、极端视角变化处理以及传感器参数整合是三个关键的技术挑战。本文将从技术实现角度深入分析这些问题,并提出专业见解。
绝对尺度估计的优化方案
VGGT当前输出需要后处理(如Sim(3)对齐)来恢复度量尺度。针对道路场景这种具有强结构先验的环境,直接预测绝对尺度具有可行性。我们建议两种技术路线:
-
基于微调的方案:使用度量尺度标注的道路数据对现有VGGT架构进行微调。这种方法能够保持模型的几何一致性,同时适应度量尺度预测。根据实践经验,建议使用超过10,000个序列的训练数据以确保稳定收敛。
-
可学习尺度因子方案:引入可学习的尺度因子作为模型参数。虽然理论上可行,但实际效果可能不如直接微调方案理想,特别是在保持几何一致性方面。
道路场景中的结构化特征(如标准3.5米车道宽度)为绝对尺度学习提供了强先验,这使得在相对较小的数据集上也能取得不错的效果。
极端视角变化的处理策略
在处理包含90度U型转弯的序列时,性能下降主要源于两个因素:
-
训练数据不足:模型在训练阶段可能缺乏足够多的极端视角变化样本,导致泛化能力受限。
-
全局注意力机制的限制:当前的全局注意力机制会对所有图像进行计算,无论其与当前图像的几何一致性如何。虽然理论上可以设计自适应注意力机制来动态选择几何一致的帧进行计算,但这种优化主要带来的是计算效率的提升,而非性能的显著改善。
建议的改进方向是增加训练数据的多样性,特别是包含各种极端视角变化的场景,这比修改注意力机制可能带来更直接的性能提升。
传感器参数整合的框架设计
对于实际部署场景中部分相机参数已知的情况,可以采用类似DiT架构的方法:
-
参数嵌入:将已知的内参和外参作为网络输入嵌入到模型中。这种方法简单有效,且与现有观察结果一致。
-
灵活框架设计:建议设计一个能够选择性接收相机参数的框架,既可以处理参数完全未知的情况,也能利用部分已知参数提升性能。
结论
VGGT在绝对尺度学习、极端视角处理和传感器参数整合方面仍有优化空间。通过数据增强、架构微调和参数嵌入等技术手段,可以进一步提升模型在实际场景中的表现。特别值得注意的是,在道路场景这种具有强结构先验的环境中,绝对尺度学习可以取得比通用场景更好的效果。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00