探索高效并发的HashMap实现:Griddle
2024-05-31 08:59:26作者:廉皓灿Ida
在软件开发中,高效的数据结构是优化程序性能的关键之一。今天,我们要向您推荐一个名为Griddle的独特HashMap实现,它专为处理大量数据并保持稳定尾部延迟的应用而设计。这个开源项目使用了增量重塑策略,将哈希表的扩容操作分散到插入过程中,从而避免了一次性大范围迁移导致的性能瓶颈。
1、项目介绍
Griddle是一个基于Rust编程语言的HashMap变种,其核心目标是在保持高吞吐量的同时,降低因扩容引发的大规模元素移动对单个插入操作的影响。Griddle使用了Rust标准库中的hashbrown作为底层哈希表实现,并对其进行了扩展以支持增量重塑策略。
2、项目技术分析
Griddle的工作原理与传统的“一次性”扩容不同,它会在每次插入新元素时,逐步将旧哈希表的部分元素迁移到新的更大的表中。这种方法使每个插入操作都稍微慢一些,但不会出现个别插入操作大幅延时的情况。在扩容期间,旧表会保留在内存中,读取操作需要检查两个表,这会导致一段时间内的读取和删除速度变慢。然而,一旦扩容完成,性能就会恢复到正常水平。
3、项目及技术应用场景
对于那些要求高并发、低延迟且需要持续增长状态的应用,例如数据库、实时分析系统或大规模分布式服务,Griddle是一个理想的选择。特别是在处理大数据流和实时更新时,它的增量重塑特性可以显著减少尾部延迟,提高用户体验。
4、项目特点
- 均匀分布的插入时间:所有插入操作的时间差异较小,避免了因扩容导致的长时间延迟。
- 渐进式内存回收:在扩容过程中,旧表的内存不会立即释放,但最终会被回收。
- 短暂的读取和移除减速:在扩容期间,对旧键或缺失键的查找和移除速度可能会暂时下降。
- 轻量级栈占用:相比于标准库实现,Griddle在栈上占用稍多空间。
- 高效的扩容效率:虽然每次只迁移部分元素,但整体扩容效率仍能保持在一个合理的范围内。
通过Benchmarks,我们可以看到Griddle与标准库HashMap相比,在高负载插入场景下,减少了明显的延迟峰值,提供了更稳定的性能表现。
最后,Griddle遵循Apache 2.0或MIT许可协议,欢迎开发者们参与贡献和改进。
现在,是时候尝试一下Griddle,看看它如何提升您的应用性能吧!
cargo add griddle
让我们一起探索Griddle带来的高效并发体验!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493