首页
/ Godot群体行为模拟:AI智能体系统开发

Godot群体行为模拟:AI智能体系统开发

2026-02-04 04:56:56作者:庞队千Virginia

还在为游戏中的NPC(Non-Player Character,非玩家角色)行为单一、缺乏真实感而烦恼吗?本文将带你深入探索Godot引擎中的群体行为模拟技术,通过NavigationAgent系统实现智能、自然的AI群体行为。

读完本文,你将掌握:

  • NavigationAgent核心组件的工作原理
  • 群体行为算法的实现原理
  • 避障与路径规划的实战技巧
  • 多智能体协同行为的开发方法
  • 性能优化与调试的最佳实践

群体行为模拟技术概览

群体行为模拟(Swarm Behavior Simulation)是游戏AI开发中的重要领域,它模拟生物群体(如鸟群、鱼群、人群)的集体行为模式。在Godot中,我们主要通过NavigationAgent系统来实现这一功能。

核心组件架构

graph TB
    A[NavigationServer] --> B[NavigationRegion]
    A --> C[NavigationAgent]
    A --> D[NavigationObstacle]
    
    C --> E[路径规划 Pathfinding]
    C --> F[避障机制 Avoidance]
    C --> G[行为决策 Behavior]
    
    E --> H[目标位置设置]
    E --> I[路径查询]
    E --> J[路径跟随]
    
    F --> K[RVO碰撞避免]
    F --> L[速度计算]
    F --> M[优先级管理]
    
    G --> N[状态机]
    G --> O[群体规则]
    G --> P[环境感知]

NavigationAgent核心功能解析

基础属性配置

NavigationAgent提供了丰富的配置选项来控制智能体的行为:

extends NavigationAgent3D

# 路径规划参数
@export var navigation_layers: int = 1  # 导航层掩码
@export var path_desired_distance: float = 1.0  # 路径点期望距离
@export var target_desired_distance: float = 1.0  # 目标期望距离
@export var path_max_distance: float = 5.0  # 路径最大偏离距离

# 避障参数  
@export var avoidance_enabled: bool = true
@export var radius: float = 0.5  # 智能体半径
@export var height: float = 1.0  # 智能体高度
@export var max_neighbors: int = 10  # 最大邻居数量
@export var neighbor_distance: float = 50.0  # 邻居检测距离
@export var time_horizon_agents: float = 1.0  # 避障预测时间
@export var max_speed: float = 10.0  # 最大速度

路径规划工作流程

sequenceDiagram
    participant A as 智能体
    participant N as NavigationAgent
    participant S as NavigationServer
    participant M as 导航地图

    A->>N: 设置target_position
    N->>S: 请求路径查询
    S->>M: 在导航网格上寻路
    M-->>S: 返回路径点数组
    S-->>N: 返回路径结果
    N->>A: 触发路径更新信号
    
    loop 每物理帧
        A->>N: 调用get_next_path_position()
        N->>A: 返回下一个路径点位置
        A->>A: 向路径点移动
        N->>S: 更新避障速度计算
        S-->>N: 返回安全速度
        N->>A: 触发velocity_computed信号
    end

群体行为算法实现

基本群体规则实现

群体行为通常遵循三个基本规则:分离、对齐、聚集。以下是这些规则的GDScript实现:

class_name SwarmBehavior

# 分离规则:避免与邻居过于接近
static func separation(agent: Node3D, neighbors: Array, separation_distance: float) -> Vector3:
    var steer := Vector3.ZERO
    var count := 0
    
    for neighbor in neighbors:
        var dist = agent.global_position.distance_to(neighbor.global_position)
        if dist > 0 and dist < separation_distance:
            var diff = (agent.global_position - neighbor.global_position).normalized() / dist
            steer += diff
            count += 1
    
    if count > 0:
        steer /= count
    
    return steer

# 对齐规则:与邻居保持相同方向
static func alignment(agent: Node3D, neighbors: Array) -> Vector3:
    var steer := Vector3.ZERO
    var count := 0
    
    for neighbor in neighbors:
        if neighbor.has_method("get_velocity"):
            steer += neighbor.get_velocity()
            count += 1
    
    if count > 0:
        steer /= count
        steer = steer.normalized() * agent.max_speed if agent.has_method("get_max_speed") else steer.normalized()
    
    return steer

# 聚集规则:向邻居中心移动
static func cohesion(agent: Node3D, neighbors: Array) -> Vector3:
    var steer := Vector3.ZERO
    var count := 0
    
    for neighbor in neighbors:
        steer += neighbor.global_position
        count += 1
    
    if count > 0:
        steer /= count
        return (steer - agent.global_position).normalized()
    
    return Vector3.ZERO

完整群体智能体实现

extends CharacterBody3D

class_name SwarmAgent

@export_group("Movement Settings")
@export var max_speed: float = 5.0
@export var acceleration: float = 10.0
@export var rotation_speed: float = 5.0

@export_group("Swarm Behavior Weights")
@export var separation_weight: float = 1.5
@export var alignment_weight: float = 1.0  
@export var cohesion_weight: float = 1.0
@export var target_weight: float = 2.0

@export_group("Detection Ranges")
@export var separation_distance: float = 2.0
@export var neighbor_distance: float = 8.0

@onready var navigation_agent: NavigationAgent3D = $NavigationAgent3D
@onready var detection_area: Area3D = $DetectionArea

var current_velocity: Vector3 = Vector3.ZERO
var neighbors: Array = []

func _ready():
    navigation_agent.velocity_computed.connect(_on_velocity_computed)
    detection_area.body_entered.connect(_on_body_entered)
    detection_area.body_exited.connect(_on_body_exited)

func _on_body_entered(body: Node):
    if body is SwarmAgent and body != self:
        if not neighbors.has(body):
            neighbors.append(body)

func _on_body_exited(body: Node):
    if body is SwarmAgent:
        neighbors.erase(body)

func set_movement_target(target_position: Vector3):
    navigation_agent.target_position = target_position

func _physics_process(delta):
    if navigation_agent.is_navigation_finished():
        return
    
    # 获取邻居智能体
    var nearby_agents = _get_nearby_agents()
    
    # 计算群体行为力
    var separation_force = SwarmBehavior.separation(self, nearby_agents, separation_distance) * separation_weight
    var alignment_force = SwarmBehavior.alignment(self, nearby_agents) * alignment_weight
    var cohesion_force = SwarmBehavior.cohesion(self, nearby_agents) * cohesion_weight
    
    # 获取导航路径方向
    var next_path_pos = navigation_agent.get_next_path_position()
    var target_direction = (next_path_pos - global_position).normalized() * target_weight
    
    # 合并所有力
    var desired_velocity = (separation_force + alignment_force + cohesion_force + target_direction).normalized() * max_speed
    
    # 设置速度给NavigationAgent进行避障计算
    if navigation_agent.avoidance_enabled:
        navigation_agent.velocity = desired_velocity
    else:
        _on_velocity_computed(desired_velocity)

func _on_velocity_computed(safe_velocity: Vector3):
    # 平滑转向
    var target_rotation = Transform3D().looking_at(safe_velocity.normalized(), Vector3.UP)
    rotation = rotation.lerp(target_rotation.basis.get_euler(), rotation_speed * get_physics_process_delta_time())
    
    # 应用速度
    velocity = velocity.move_toward(safe_velocity, acceleration * get_physics_process_delta_time())
    move_and_slide()

func _get_nearby_agents() -> Array:
    var nearby: Array = []
    for body in detection_area.get_overlapping_bodies():
        if body is SwarmAgent and body != self:
            var distance = global_position.distance_to(body.global_position)
            if distance <= neighbor_distance:
                nearby.append(body)
    return nearby

高级群体行为模式

分层状态机实现

复杂的群体行为需要状态机来管理不同的行为模式:

enum AgentState {
    IDLE,           # 空闲状态
    WANDERING,      # 漫游状态
    FOLLOWING,      # 跟随状态
    FLEEING,        # 逃跑状态
    FORMATION       # 编队状态
}

extends SwarmAgent

var current_state: AgentState = AgentState.IDLE
var state_timer: float = 0.0
var wander_target: Vector3

func _physics_process(delta):
    state_timer += delta
    
    match current_state:
        AgentState.IDLE:
            _update_idle_state(delta)
        AgentState.WANDERING:
            _update_wandering_state(delta)
        AgentState.FOLLOWING:
            _update_following_state(delta)
        AgentState.FLEEING:
            _update_fleeing_state(delta)
        AgentState.FORMATION:
            _update_formation_state(delta)

func _update_idle_state(delta):
    if state_timer > 2.0:  # 空闲2秒后开始漫游
        change_state(AgentState.WANDERING)

func _update_wandering_state(delta):
    if state_timer > 5.0 or navigation_agent.is_navigation_finished():
        # 设置新的漫游目标
        wander_target = global_position + Vector3(
            randf_range(-10, 10),
            0,
            randf_range(-10, 10)
        )
        set_movement_target(wander_target)
        state_timer = 0.0

func change_state(new_state: AgentState):
    current_state = new_state
    state_timer = 0.0
    
    match new_state:
        AgentState.FLEEING:
            max_speed = 8.0  # 逃跑时速度更快
        _:
            max_speed = 5.0  # 恢复正常速度

编队系统实现

class FormationSystem:
    static func calculate_formation_position(leader: Node3D, index: int, formation_type: String) -> Vector3:
        var offset: Vector3
        
        match formation_type:
            "V_SHAPE":
                # V字形编队
                var row = int(sqrt(index))
                var col = index - row * row
                offset = Vector3(col * 2.0, 0, -row * 2.0)
                
            "LINE":
                # 线性编队
                offset = Vector3(index * 2.0, 0, 0)
                
            "CIRCLE":
                # 圆形编队
                var angle = 2 * PI * index / 8  # 假设最多8个成员
                var radius = 4.0
                offset = Vector3(cos(angle) * radius, 0, sin(angle) * radius)
                
            _:
                offset = Vector3.ZERO
        
        return leader.global_position + leader.global_transform.basis * offset

# 在智能体中使用编队系统
func _update_formation_state(delta):
    var leader = get_formation_leader()
    if leader:
        var formation_pos = FormationSystem.calculate_formation_position(
            leader, 
            get_formation_index(),
            "V_SHAPE"
        )
        set_movement_target(formation_pos)

性能优化策略

空间分区优化

对于大规模群体模拟,空间分区是必要的性能优化手段:

class SpatialPartition:
    var cell_size: float
    var grid: Dictionary = {}
    
    func _init(cell_size: float = 10.0):
        self.cell_size = cell_size
    
    func get_cell_key(position: Vector3) -> Vector3i:
        return Vector3i(
            floor(position.x / cell_size),
            floor(position.y / cell_size), 
            floor(position.z / cell_size)
        )
    
    func add_agent(agent: Node3D):
        var cell_key = get_cell_key(agent.global_position)
        if not grid.has(cell_key):
            grid[cell_key] = []
        grid[cell_key].append(agent)
    
    func remove_agent(agent: Node3D):
        var cell_key = get_cell_key(agent.global_position)
        if grid.has(cell_key):
            grid[cell_key].erase(agent)
    
    func get_nearby_agents(position: Vector3, radius: float) -> Array:
        var center_cell = get_cell_key(position)
        var search_radius = ceil(radius / cell_size)
        var nearby: Array = []
        
        for x in range(center_cell.x - search_radius, center_cell.x + search_radius + 1):
            for y in range(center_cell.y - search_radius, center_cell.y + search_radius + 1):
                for z in range(center_cell.z - search_radius, center_cell.z + search_radius + 1):
                    var cell_key = Vector3i(x, y, z)
                    if grid.has(cell_key):
                        for agent in grid[cell_key]:
                            if agent.global_position.distance_to(position) <= radius:
                                nearby.append(agent)
        
        return nearby

更新频率优化

# 智能体管理器,控制更新频率
class AgentManager:
    var agents: Array = []
    var update_groups: Dictionary = {}  # 按更新频率分组
    
    func add_agent(agent: Node3D, update_rate: float = 0.1):
        agents.append(agent)
        var group_key = str(update_rate)
        if not update_groups.has(group_key):
            update_groups[group_key] = {"agents": [], "timer": 0.0, "rate": update_rate}
        update_groups[group_key].agents.append(agent)
    
    func update(delta: float):
        for group_key in update_groups:
            var group = update_groups[group_key]
            group.timer += delta
            
            if group.timer >= group.rate:
                group.timer = 0.0
                for agent in group.agents:
                    if is_instance_valid(agent):
                        agent.update_behavior()

调试与可视化

调试信息显示

extends Node3D

class_name DebugVisualizer

@export var show_path: bool = true
@export var show_velocity: bool = true
@export var show_neighbors: bool = true
@export var debug_color: Color = Color.YELLOW

var debug_mesh: ImmediateMesh
var debug_material: StandardMaterial3D

func _ready():
    debug_mesh = ImmediateMesh.new()
    debug_material = StandardMaterial3D.new()
    debug_material.flags_unshaded = true
    debug_material.vertex_color_use_as_albedo = true
    
    var mesh_instance = MeshInstance3D.new()
    mesh_instance.mesh = debug_mesh
    mesh_instance.material_override = debug_material
    add_child(mesh_instance)

func draw_agent_debug(agent: SwarmAgent):
    debug_mesh.clear_surfaces()
    
    if show_path and agent.navigation_agent:
        var path = agent.navigation_agent.get_current_navigation_path()
        debug_mesh.surface_begin(Mesh.PRIMITIVE_LINE_STRIP)
        debug_mesh.surface_set_color(debug_color)
        for point in path:
            debug_mesh.surface_add_vertex(point)
        debug_mesh.surface_end()
    
    if show_velocity:
        var start = agent.global_position
        var end = start + agent.velocity.normalized() * 2.0
        debug_mesh.surface_begin(Mesh.PRIMITIVE_LINES)
        debug_mesh.surface_set_color(Color.GREEN)
        debug_mesh.surface_add_vertex(start)
        debug_mesh.surface_add_vertex(end)
        debug_mesh.surface_end()
    
    if show_neighbors:
        for neighbor in agent.neighbors:
            if is_instance_valid(neighbor):
                debug_mesh.surface_begin(Mesh.PRIMITIVE_LINES)
                debug_mesh.surface_set_color(Color.BLUE)
                debug_mesh.surface_add_vertex(agent.global_position)
                debug_mesh.surface_add_vertex(neighbor.global_position)
                debug_mesh.surface_end()

实战案例:鸟群模拟系统

完整的鸟群模拟实现

extends Node3D

class_name BirdFlockSimulation

@export var flock_size: int = 20
@export var spawn_radius: float = 10.0
@export var bird_scene: PackedScene

var birds: Array = []
var spatial_partition: SpatialPartition
var agent_manager: AgentManager

func _ready():
    spatial_partition = SpatialPartition.new(15.0)
    agent_manager = AgentManager.new()
    
    spawn_flock()
    setup_navigation_environment()

func spawn_flock():
    for i in range(flock_size):
        var bird = bird_scene.instantiate()
        var spawn_pos = global_position + Vector3(
            randf_range(-spawn_radius, spawn_radius),
            randf_range(5, 15),
            randf_range(-spawn_radius, spawn_radius)
        )
        
        bird.global_position = spawn_pos
        add_child(bird)
        birds.append(bird)
        
        spatial_partition.add_agent(bird)
        agent_manager.add_agent(bird, randf_range(0.05, 0.2))

func setup_navigation_environment():
    # 创建导航网格
    var navigation
登录后查看全文
热门项目推荐
相关项目推荐