Godot群体行为模拟:AI智能体系统开发
2026-02-04 04:56:56作者:庞队千Virginia
还在为游戏中的NPC(Non-Player Character,非玩家角色)行为单一、缺乏真实感而烦恼吗?本文将带你深入探索Godot引擎中的群体行为模拟技术,通过NavigationAgent系统实现智能、自然的AI群体行为。
读完本文,你将掌握:
- NavigationAgent核心组件的工作原理
- 群体行为算法的实现原理
- 避障与路径规划的实战技巧
- 多智能体协同行为的开发方法
- 性能优化与调试的最佳实践
群体行为模拟技术概览
群体行为模拟(Swarm Behavior Simulation)是游戏AI开发中的重要领域,它模拟生物群体(如鸟群、鱼群、人群)的集体行为模式。在Godot中,我们主要通过NavigationAgent系统来实现这一功能。
核心组件架构
graph TB
A[NavigationServer] --> B[NavigationRegion]
A --> C[NavigationAgent]
A --> D[NavigationObstacle]
C --> E[路径规划 Pathfinding]
C --> F[避障机制 Avoidance]
C --> G[行为决策 Behavior]
E --> H[目标位置设置]
E --> I[路径查询]
E --> J[路径跟随]
F --> K[RVO碰撞避免]
F --> L[速度计算]
F --> M[优先级管理]
G --> N[状态机]
G --> O[群体规则]
G --> P[环境感知]
NavigationAgent核心功能解析
基础属性配置
NavigationAgent提供了丰富的配置选项来控制智能体的行为:
extends NavigationAgent3D
# 路径规划参数
@export var navigation_layers: int = 1 # 导航层掩码
@export var path_desired_distance: float = 1.0 # 路径点期望距离
@export var target_desired_distance: float = 1.0 # 目标期望距离
@export var path_max_distance: float = 5.0 # 路径最大偏离距离
# 避障参数
@export var avoidance_enabled: bool = true
@export var radius: float = 0.5 # 智能体半径
@export var height: float = 1.0 # 智能体高度
@export var max_neighbors: int = 10 # 最大邻居数量
@export var neighbor_distance: float = 50.0 # 邻居检测距离
@export var time_horizon_agents: float = 1.0 # 避障预测时间
@export var max_speed: float = 10.0 # 最大速度
路径规划工作流程
sequenceDiagram
participant A as 智能体
participant N as NavigationAgent
participant S as NavigationServer
participant M as 导航地图
A->>N: 设置target_position
N->>S: 请求路径查询
S->>M: 在导航网格上寻路
M-->>S: 返回路径点数组
S-->>N: 返回路径结果
N->>A: 触发路径更新信号
loop 每物理帧
A->>N: 调用get_next_path_position()
N->>A: 返回下一个路径点位置
A->>A: 向路径点移动
N->>S: 更新避障速度计算
S-->>N: 返回安全速度
N->>A: 触发velocity_computed信号
end
群体行为算法实现
基本群体规则实现
群体行为通常遵循三个基本规则:分离、对齐、聚集。以下是这些规则的GDScript实现:
class_name SwarmBehavior
# 分离规则:避免与邻居过于接近
static func separation(agent: Node3D, neighbors: Array, separation_distance: float) -> Vector3:
var steer := Vector3.ZERO
var count := 0
for neighbor in neighbors:
var dist = agent.global_position.distance_to(neighbor.global_position)
if dist > 0 and dist < separation_distance:
var diff = (agent.global_position - neighbor.global_position).normalized() / dist
steer += diff
count += 1
if count > 0:
steer /= count
return steer
# 对齐规则:与邻居保持相同方向
static func alignment(agent: Node3D, neighbors: Array) -> Vector3:
var steer := Vector3.ZERO
var count := 0
for neighbor in neighbors:
if neighbor.has_method("get_velocity"):
steer += neighbor.get_velocity()
count += 1
if count > 0:
steer /= count
steer = steer.normalized() * agent.max_speed if agent.has_method("get_max_speed") else steer.normalized()
return steer
# 聚集规则:向邻居中心移动
static func cohesion(agent: Node3D, neighbors: Array) -> Vector3:
var steer := Vector3.ZERO
var count := 0
for neighbor in neighbors:
steer += neighbor.global_position
count += 1
if count > 0:
steer /= count
return (steer - agent.global_position).normalized()
return Vector3.ZERO
完整群体智能体实现
extends CharacterBody3D
class_name SwarmAgent
@export_group("Movement Settings")
@export var max_speed: float = 5.0
@export var acceleration: float = 10.0
@export var rotation_speed: float = 5.0
@export_group("Swarm Behavior Weights")
@export var separation_weight: float = 1.5
@export var alignment_weight: float = 1.0
@export var cohesion_weight: float = 1.0
@export var target_weight: float = 2.0
@export_group("Detection Ranges")
@export var separation_distance: float = 2.0
@export var neighbor_distance: float = 8.0
@onready var navigation_agent: NavigationAgent3D = $NavigationAgent3D
@onready var detection_area: Area3D = $DetectionArea
var current_velocity: Vector3 = Vector3.ZERO
var neighbors: Array = []
func _ready():
navigation_agent.velocity_computed.connect(_on_velocity_computed)
detection_area.body_entered.connect(_on_body_entered)
detection_area.body_exited.connect(_on_body_exited)
func _on_body_entered(body: Node):
if body is SwarmAgent and body != self:
if not neighbors.has(body):
neighbors.append(body)
func _on_body_exited(body: Node):
if body is SwarmAgent:
neighbors.erase(body)
func set_movement_target(target_position: Vector3):
navigation_agent.target_position = target_position
func _physics_process(delta):
if navigation_agent.is_navigation_finished():
return
# 获取邻居智能体
var nearby_agents = _get_nearby_agents()
# 计算群体行为力
var separation_force = SwarmBehavior.separation(self, nearby_agents, separation_distance) * separation_weight
var alignment_force = SwarmBehavior.alignment(self, nearby_agents) * alignment_weight
var cohesion_force = SwarmBehavior.cohesion(self, nearby_agents) * cohesion_weight
# 获取导航路径方向
var next_path_pos = navigation_agent.get_next_path_position()
var target_direction = (next_path_pos - global_position).normalized() * target_weight
# 合并所有力
var desired_velocity = (separation_force + alignment_force + cohesion_force + target_direction).normalized() * max_speed
# 设置速度给NavigationAgent进行避障计算
if navigation_agent.avoidance_enabled:
navigation_agent.velocity = desired_velocity
else:
_on_velocity_computed(desired_velocity)
func _on_velocity_computed(safe_velocity: Vector3):
# 平滑转向
var target_rotation = Transform3D().looking_at(safe_velocity.normalized(), Vector3.UP)
rotation = rotation.lerp(target_rotation.basis.get_euler(), rotation_speed * get_physics_process_delta_time())
# 应用速度
velocity = velocity.move_toward(safe_velocity, acceleration * get_physics_process_delta_time())
move_and_slide()
func _get_nearby_agents() -> Array:
var nearby: Array = []
for body in detection_area.get_overlapping_bodies():
if body is SwarmAgent and body != self:
var distance = global_position.distance_to(body.global_position)
if distance <= neighbor_distance:
nearby.append(body)
return nearby
高级群体行为模式
分层状态机实现
复杂的群体行为需要状态机来管理不同的行为模式:
enum AgentState {
IDLE, # 空闲状态
WANDERING, # 漫游状态
FOLLOWING, # 跟随状态
FLEEING, # 逃跑状态
FORMATION # 编队状态
}
extends SwarmAgent
var current_state: AgentState = AgentState.IDLE
var state_timer: float = 0.0
var wander_target: Vector3
func _physics_process(delta):
state_timer += delta
match current_state:
AgentState.IDLE:
_update_idle_state(delta)
AgentState.WANDERING:
_update_wandering_state(delta)
AgentState.FOLLOWING:
_update_following_state(delta)
AgentState.FLEEING:
_update_fleeing_state(delta)
AgentState.FORMATION:
_update_formation_state(delta)
func _update_idle_state(delta):
if state_timer > 2.0: # 空闲2秒后开始漫游
change_state(AgentState.WANDERING)
func _update_wandering_state(delta):
if state_timer > 5.0 or navigation_agent.is_navigation_finished():
# 设置新的漫游目标
wander_target = global_position + Vector3(
randf_range(-10, 10),
0,
randf_range(-10, 10)
)
set_movement_target(wander_target)
state_timer = 0.0
func change_state(new_state: AgentState):
current_state = new_state
state_timer = 0.0
match new_state:
AgentState.FLEEING:
max_speed = 8.0 # 逃跑时速度更快
_:
max_speed = 5.0 # 恢复正常速度
编队系统实现
class FormationSystem:
static func calculate_formation_position(leader: Node3D, index: int, formation_type: String) -> Vector3:
var offset: Vector3
match formation_type:
"V_SHAPE":
# V字形编队
var row = int(sqrt(index))
var col = index - row * row
offset = Vector3(col * 2.0, 0, -row * 2.0)
"LINE":
# 线性编队
offset = Vector3(index * 2.0, 0, 0)
"CIRCLE":
# 圆形编队
var angle = 2 * PI * index / 8 # 假设最多8个成员
var radius = 4.0
offset = Vector3(cos(angle) * radius, 0, sin(angle) * radius)
_:
offset = Vector3.ZERO
return leader.global_position + leader.global_transform.basis * offset
# 在智能体中使用编队系统
func _update_formation_state(delta):
var leader = get_formation_leader()
if leader:
var formation_pos = FormationSystem.calculate_formation_position(
leader,
get_formation_index(),
"V_SHAPE"
)
set_movement_target(formation_pos)
性能优化策略
空间分区优化
对于大规模群体模拟,空间分区是必要的性能优化手段:
class SpatialPartition:
var cell_size: float
var grid: Dictionary = {}
func _init(cell_size: float = 10.0):
self.cell_size = cell_size
func get_cell_key(position: Vector3) -> Vector3i:
return Vector3i(
floor(position.x / cell_size),
floor(position.y / cell_size),
floor(position.z / cell_size)
)
func add_agent(agent: Node3D):
var cell_key = get_cell_key(agent.global_position)
if not grid.has(cell_key):
grid[cell_key] = []
grid[cell_key].append(agent)
func remove_agent(agent: Node3D):
var cell_key = get_cell_key(agent.global_position)
if grid.has(cell_key):
grid[cell_key].erase(agent)
func get_nearby_agents(position: Vector3, radius: float) -> Array:
var center_cell = get_cell_key(position)
var search_radius = ceil(radius / cell_size)
var nearby: Array = []
for x in range(center_cell.x - search_radius, center_cell.x + search_radius + 1):
for y in range(center_cell.y - search_radius, center_cell.y + search_radius + 1):
for z in range(center_cell.z - search_radius, center_cell.z + search_radius + 1):
var cell_key = Vector3i(x, y, z)
if grid.has(cell_key):
for agent in grid[cell_key]:
if agent.global_position.distance_to(position) <= radius:
nearby.append(agent)
return nearby
更新频率优化
# 智能体管理器,控制更新频率
class AgentManager:
var agents: Array = []
var update_groups: Dictionary = {} # 按更新频率分组
func add_agent(agent: Node3D, update_rate: float = 0.1):
agents.append(agent)
var group_key = str(update_rate)
if not update_groups.has(group_key):
update_groups[group_key] = {"agents": [], "timer": 0.0, "rate": update_rate}
update_groups[group_key].agents.append(agent)
func update(delta: float):
for group_key in update_groups:
var group = update_groups[group_key]
group.timer += delta
if group.timer >= group.rate:
group.timer = 0.0
for agent in group.agents:
if is_instance_valid(agent):
agent.update_behavior()
调试与可视化
调试信息显示
extends Node3D
class_name DebugVisualizer
@export var show_path: bool = true
@export var show_velocity: bool = true
@export var show_neighbors: bool = true
@export var debug_color: Color = Color.YELLOW
var debug_mesh: ImmediateMesh
var debug_material: StandardMaterial3D
func _ready():
debug_mesh = ImmediateMesh.new()
debug_material = StandardMaterial3D.new()
debug_material.flags_unshaded = true
debug_material.vertex_color_use_as_albedo = true
var mesh_instance = MeshInstance3D.new()
mesh_instance.mesh = debug_mesh
mesh_instance.material_override = debug_material
add_child(mesh_instance)
func draw_agent_debug(agent: SwarmAgent):
debug_mesh.clear_surfaces()
if show_path and agent.navigation_agent:
var path = agent.navigation_agent.get_current_navigation_path()
debug_mesh.surface_begin(Mesh.PRIMITIVE_LINE_STRIP)
debug_mesh.surface_set_color(debug_color)
for point in path:
debug_mesh.surface_add_vertex(point)
debug_mesh.surface_end()
if show_velocity:
var start = agent.global_position
var end = start + agent.velocity.normalized() * 2.0
debug_mesh.surface_begin(Mesh.PRIMITIVE_LINES)
debug_mesh.surface_set_color(Color.GREEN)
debug_mesh.surface_add_vertex(start)
debug_mesh.surface_add_vertex(end)
debug_mesh.surface_end()
if show_neighbors:
for neighbor in agent.neighbors:
if is_instance_valid(neighbor):
debug_mesh.surface_begin(Mesh.PRIMITIVE_LINES)
debug_mesh.surface_set_color(Color.BLUE)
debug_mesh.surface_add_vertex(agent.global_position)
debug_mesh.surface_add_vertex(neighbor.global_position)
debug_mesh.surface_end()
实战案例:鸟群模拟系统
完整的鸟群模拟实现
extends Node3D
class_name BirdFlockSimulation
@export var flock_size: int = 20
@export var spawn_radius: float = 10.0
@export var bird_scene: PackedScene
var birds: Array = []
var spatial_partition: SpatialPartition
var agent_manager: AgentManager
func _ready():
spatial_partition = SpatialPartition.new(15.0)
agent_manager = AgentManager.new()
spawn_flock()
setup_navigation_environment()
func spawn_flock():
for i in range(flock_size):
var bird = bird_scene.instantiate()
var spawn_pos = global_position + Vector3(
randf_range(-spawn_radius, spawn_radius),
randf_range(5, 15),
randf_range(-spawn_radius, spawn_radius)
)
bird.global_position = spawn_pos
add_child(bird)
birds.append(bird)
spatial_partition.add_agent(bird)
agent_manager.add_agent(bird, randf_range(0.05, 0.2))
func setup_navigation_environment():
# 创建导航网格
var navigation
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355