PyTorch Lightning中FSDP策略与模型检查点保存的兼容性问题分析
2025-05-05 14:50:44作者:伍霜盼Ellen
问题背景
在使用PyTorch Lightning框架进行分布式训练时,当采用FSDP(完全分片数据并行)策略并设置state_dict_type='sharded'参数时,如果同时配置了只保存模型权重的检查点回调(ModelCheckpoint(save_weights_only=True)),会导致训练过程中出现KeyError: 'optimizer_states'错误。
技术细节分析
这个问题的根源在于FSDP策略的检查点保存逻辑与模型检查点回调的交互方式。在PyTorch Lightning的实现中:
- 当使用FSDP策略并设置
state_dict_type='sharded'时,系统会尝试将检查点数据转换为特定格式 - 转换过程中会默认尝试获取并处理优化器状态(
optimizer_states) - 但当
save_weights_only=True时,检查点中实际上不包含优化器状态信息 - 这导致在尝试访问不存在的
optimizer_states键时抛出异常 
解决方案
针对这个问题,开发团队提出了两种可行的修复方案:
- 显式检查键是否存在:在执行转换前先检查
optimizer_states键是否存在于检查点字典中 - 使用字典的默认值特性:利用Python字典的
pop方法的默认值参数,当键不存在时返回空列表 
第二种方案更为简洁优雅,只需将原有代码中的:
checkpoint.pop("optimizer_states")
修改为:
checkpoint.pop("optimizer_states", [])
影响范围
这个问题主要影响以下使用场景的组合:
- 使用FSDP分布式训练策略
 - 设置
state_dict_type='sharded'参数 - 配置模型检查点回调并启用
save_weights_only=True选项 
对于不使用FSDP策略,或者使用完整检查点保存(包含优化器状态)的情况,不会触发此问题。
最佳实践建议
对于PyTorch Lightning用户,在使用FSDP策略时应当注意:
- 如果确实只需要保存模型权重,可以采用上述修复方案
 - 考虑是否需要保存优化器状态以便恢复训练
 - 测试检查点功能是否正常工作,特别是在分布式训练场景下
 - 关注PyTorch Lightning的版本更新,确保使用包含修复的版本
 
总结
这个案例展示了深度学习框架中分布式训练与模型保存功能的复杂交互。PyTorch Lightning团队通过简洁的代码修改解决了这一边界情况,体现了框架设计中对鲁棒性的重视。对于用户而言,理解这些底层机制有助于更好地配置和使用框架的高级功能。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443