PyTorch Lightning中FSDP策略与模型检查点保存的兼容性问题分析
2025-05-05 06:27:26作者:伍霜盼Ellen
问题背景
在使用PyTorch Lightning框架进行分布式训练时,当采用FSDP(完全分片数据并行)策略并设置state_dict_type='sharded'参数时,如果同时配置了只保存模型权重的检查点回调(ModelCheckpoint(save_weights_only=True)),会导致训练过程中出现KeyError: 'optimizer_states'错误。
技术细节分析
这个问题的根源在于FSDP策略的检查点保存逻辑与模型检查点回调的交互方式。在PyTorch Lightning的实现中:
- 当使用FSDP策略并设置
state_dict_type='sharded'时,系统会尝试将检查点数据转换为特定格式 - 转换过程中会默认尝试获取并处理优化器状态(
optimizer_states) - 但当
save_weights_only=True时,检查点中实际上不包含优化器状态信息 - 这导致在尝试访问不存在的
optimizer_states键时抛出异常
解决方案
针对这个问题,开发团队提出了两种可行的修复方案:
- 显式检查键是否存在:在执行转换前先检查
optimizer_states键是否存在于检查点字典中 - 使用字典的默认值特性:利用Python字典的
pop方法的默认值参数,当键不存在时返回空列表
第二种方案更为简洁优雅,只需将原有代码中的:
checkpoint.pop("optimizer_states")
修改为:
checkpoint.pop("optimizer_states", [])
影响范围
这个问题主要影响以下使用场景的组合:
- 使用FSDP分布式训练策略
- 设置
state_dict_type='sharded'参数 - 配置模型检查点回调并启用
save_weights_only=True选项
对于不使用FSDP策略,或者使用完整检查点保存(包含优化器状态)的情况,不会触发此问题。
最佳实践建议
对于PyTorch Lightning用户,在使用FSDP策略时应当注意:
- 如果确实只需要保存模型权重,可以采用上述修复方案
- 考虑是否需要保存优化器状态以便恢复训练
- 测试检查点功能是否正常工作,特别是在分布式训练场景下
- 关注PyTorch Lightning的版本更新,确保使用包含修复的版本
总结
这个案例展示了深度学习框架中分布式训练与模型保存功能的复杂交互。PyTorch Lightning团队通过简洁的代码修改解决了这一边界情况,体现了框架设计中对鲁棒性的重视。对于用户而言,理解这些底层机制有助于更好地配置和使用框架的高级功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134