PaddleDetection中PP-YOLOE-SOD模型推理性能分析
背景介绍
在目标检测领域,小目标检测一直是一个具有挑战性的任务。PaddleDetection项目中的PP-YOLOE-SOD系列模型是专门针对小目标检测优化的高性能模型。然而在实际应用中,用户发现了一个有趣的现象:模型推理速度与模型大小并不完全成正比。
现象描述
在测试PP-YOLOE-SOD系列模型时,观察到以下现象:
- PP-YOLOE+_SOD-largesize-l模型:输入尺寸1920x1920,推理时间895.9ms
- PP-YOLOE+_SOD-l模型:输入尺寸640x640,推理时间282.3ms
- PP-YOLOE+_SOD-s模型:输入尺寸640x640,推理时间405.4ms
令人意外的是,较小的S模型比L模型推理速度更慢,这与常规认知相悖。
原因分析
经过深入分析,发现这种现象主要由以下几个因素造成:
-
输入尺寸差异:largesize-l模型使用了更大的输入分辨率(1920x1920),这显著增加了计算量,导致其推理时间最长。
-
后处理时间影响:在测试场景中,图像包含189个目标,NMS(非极大值抑制)操作消耗了大量时间。虽然S模型参数量较小,但NMS处理时间与检测框数量直接相关,而与模型大小关系不大。
-
模型结构特性:小目标检测模型通常具有更密集的检测头设计,这可能导致虽然整体参数量减少,但某些计算密集型操作的比例增加。
技术建议
针对小目标检测场景下的性能优化,可以考虑以下方案:
-
模型选择:如果场景中目标数量较多,可以考虑使用基于Transformer的检测模型(如DETR系列),这类模型的后处理时间与目标数量无关。
-
输入尺寸调整:在精度允许的情况下,适当降低输入分辨率可以显著提升推理速度。
-
后处理优化:可以尝试以下方法优化NMS:
- 使用更高效的NMS实现
- 调整NMS阈值参数
- 采用级联NMS策略
-
硬件加速:启用TensorRT等推理加速引擎,特别优化NMS操作。
总结
在目标检测模型的实际应用中,推理速度不仅受模型大小影响,还与输入尺寸、后处理复杂度等因素密切相关。特别是在小目标检测场景下,由于目标数量通常较多,NMS等后处理操作可能成为性能瓶颈。开发者需要综合考虑模型结构、输入配置和后处理效率,才能获得最佳的实际应用性能。
对于高密度小目标检测场景,建议优先评估基于Transformer的端到端检测模型,这类模型可以避免传统检测器中NMS带来的性能问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00