PaddleDetection中PP-YOLOE-SOD模型推理性能分析
背景介绍
在目标检测领域,小目标检测一直是一个具有挑战性的任务。PaddleDetection项目中的PP-YOLOE-SOD系列模型是专门针对小目标检测优化的高性能模型。然而在实际应用中,用户发现了一个有趣的现象:模型推理速度与模型大小并不完全成正比。
现象描述
在测试PP-YOLOE-SOD系列模型时,观察到以下现象:
- PP-YOLOE+_SOD-largesize-l模型:输入尺寸1920x1920,推理时间895.9ms
- PP-YOLOE+_SOD-l模型:输入尺寸640x640,推理时间282.3ms
- PP-YOLOE+_SOD-s模型:输入尺寸640x640,推理时间405.4ms
令人意外的是,较小的S模型比L模型推理速度更慢,这与常规认知相悖。
原因分析
经过深入分析,发现这种现象主要由以下几个因素造成:
-
输入尺寸差异:largesize-l模型使用了更大的输入分辨率(1920x1920),这显著增加了计算量,导致其推理时间最长。
-
后处理时间影响:在测试场景中,图像包含189个目标,NMS(非极大值抑制)操作消耗了大量时间。虽然S模型参数量较小,但NMS处理时间与检测框数量直接相关,而与模型大小关系不大。
-
模型结构特性:小目标检测模型通常具有更密集的检测头设计,这可能导致虽然整体参数量减少,但某些计算密集型操作的比例增加。
技术建议
针对小目标检测场景下的性能优化,可以考虑以下方案:
-
模型选择:如果场景中目标数量较多,可以考虑使用基于Transformer的检测模型(如DETR系列),这类模型的后处理时间与目标数量无关。
-
输入尺寸调整:在精度允许的情况下,适当降低输入分辨率可以显著提升推理速度。
-
后处理优化:可以尝试以下方法优化NMS:
- 使用更高效的NMS实现
- 调整NMS阈值参数
- 采用级联NMS策略
-
硬件加速:启用TensorRT等推理加速引擎,特别优化NMS操作。
总结
在目标检测模型的实际应用中,推理速度不仅受模型大小影响,还与输入尺寸、后处理复杂度等因素密切相关。特别是在小目标检测场景下,由于目标数量通常较多,NMS等后处理操作可能成为性能瓶颈。开发者需要综合考虑模型结构、输入配置和后处理效率,才能获得最佳的实际应用性能。
对于高密度小目标检测场景,建议优先评估基于Transformer的端到端检测模型,这类模型可以避免传统检测器中NMS带来的性能问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01