推荐开源项目:TensorFlow实现的点击率预测宽深学习框架
2024-05-22 10:22:21作者:龚格成
项目介绍
在大数据时代,点击率预测是个性化推荐系统的关键一环,本项目提供了一个基于TensorFlow的宽深学习框架,用于点击率(CTR)预测。灵感来源于谷歌2016年提出的宽深结合模型,它将记忆性极强的宽模型和具有强大泛化能力的深度模型相结合,以达到更好的预测效果。
该项目使用了高级的tf.estimator.Estimator API,方便进行快速迭代,并能轻松适应不同的数据集,支持从单机训练到分布式训练的平滑过渡,同时也简化了模型预测阶段的导出工作。
此外,它利用了tf.data.Dataset API,使得数据预处理更加便捷,可以轻松应用各种转换,如映射、批处理、洗牌等。
项目技术分析
- 灵活配置:该框架允许非常灵活的特征配置和训练配置,可适应不同场景的需求。
- 扩展性:能够处理任意大小的训练数据,适合生产环境的部署。
- 多值特征输入:支持多热编码的多值特征输入。
- 分布式支持:内置对分布式TensorFlow的支持,提高训练效率。
- 自定义网络:可定制DNN网络结构,包括层间连接方式,以及各种优化选项。
- 正则化与权重衰减:加入BN层、激活函数、L1/L2正则化和权重衰减的学习率策略,提升模型性能。
- 连续特征处理:支持三种类型的连续特征归一化方法。
- 样本权重:针对不平衡数据集,提供了样本权重列的设置。
- TensorFlow Serving:提供了与
tf.estimator配合的TensorFlow Serving接口,方便模型上线服务。 - 数据预处理:附带Python脚本,利用pyspark进行数据预处理,生成连续特征。
应用场景
这个项目在以下领域有着广泛的应用潜力:
- 推荐系统:通过预测用户对物品的点击概率,实现个性化推荐。
- 广告投放:预测广告的点击率,优化广告投放策略。
- 电子商务:在搜索结果中排序商品,提高转化率。
- 社交媒体:预测用户对内容的互动可能性,优化用户体验。
项目特点
- 易用性:基于高阶API,易于理解和修改,适用于初学者和专家。
- 灵活性:支持多种模型结构、特征工程和优化策略的自由组合。
- 扩展性强:不仅限于基本的宽深模型,还可以与其他模型如CNN结合,适应复杂的任务需求。
- 高效性:内置分布式训练支持,能够在大规模数据集上运行。
- 全面的工具链:包含了从数据预处理、模型训练到模型部署的全套流程,为开发和运维带来极大便利。
总的来说,这个开源项目是一个强大的工具,它将帮助开发者和数据科学家更有效地构建和优化点击率预测模型。无论是学术研究还是实际业务应用,都能从中受益。现在就尝试一下,开启你的宽深学习之旅吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216