在Docker Compose中部署Coqui TTS语音合成服务
Coqui TTS是一个开源的文本转语音(TTS)系统,提供了高质量的语音合成能力。本文将介绍如何通过Docker Compose来部署Coqui TTS服务,特别是其多语言XTTS v2模型。
为什么使用Docker Compose部署
Docker Compose允许我们通过一个简单的YAML文件定义和运行多容器Docker应用。对于Coqui TTS这样的服务,使用Docker Compose可以带来以下优势:
- 简化部署流程,无需手动执行复杂的安装步骤
- 确保环境一致性,避免"在我机器上能运行"的问题
- 方便管理服务配置和依赖项
- 易于版本控制和团队共享
准备Docker Compose文件
以下是部署Coqui TTS服务的典型docker-compose.yml配置:
version: '3'
services:
coqui-tts:
container_name: coqui-tts-server
image: ghcr.io/coqui-ai/tts
build:
context: ./TTS
ports:
- "5002:5002"
entrypoint: ["python3", "TTS/server/server.py", "--model_name", "tts_models/multilingual/multi-dataset/xtts_v2"]
volumes:
- ./tts-cache:/root/.local/share
配置详解
-
镜像选择:使用官方提供的
ghcr.io/coqui-ai/tts镜像,这是Coqui团队维护的稳定版本。 -
端口映射:将容器内部的5002端口映射到主机的5002端口,这是Coqui TTS服务器的默认端口。
-
模型指定:通过entrypoint参数指定使用XTTS v2多语言模型,这是目前支持最广泛语言的模型之一。
-
数据持久化:将模型缓存目录挂载到本地
./tts-cache目录,避免每次重启都重新下载模型。
部署步骤
-
创建项目目录并进入:
mkdir coqui-tts && cd coqui-tts -
克隆Coqui TTS仓库:
git clone https://github.com/coqui-ai/TTS.git -
创建docker-compose.yml文件,内容如上。
-
启动服务:
docker-compose up -d -
验证服务是否正常运行:
curl http://localhost:5002
使用建议
-
硬件要求:XTTS v2模型对GPU有较好支持,如果主机有NVIDIA GPU,建议配置GPU支持以获得更好的性能。
-
模型选择:除了XTTS v2,Coqui TTS还提供其他模型,可以根据需要修改
--model_name参数。 -
性能调优:对于生产环境,可能需要调整容器的资源限制(CPU、内存)。
-
安全考虑:如果暴露在公网,建议添加认证层或通过反向代理进行保护。
常见问题解决
-
模型下载慢:可以预先下载模型到挂载目录,或者使用国内镜像源。
-
GPU支持问题:确保主机安装了正确的NVIDIA驱动和Docker GPU支持。
-
内存不足:大模型可能需要较多内存,可尝试增加Docker内存分配或使用较小模型。
通过以上配置,您可以轻松地在任何支持Docker的环境中部署Coqui TTS服务,为应用程序添加高质量的语音合成能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00