Elasticsearch Analysis-ANSJ 插件最佳实践
2025-05-13 20:41:11作者:殷蕙予
1. 项目介绍
Elasticsearch Analysis-ANSJ 是一款针对 Elasticsearch 的中文分词插件。ANSJ 分词是一个基于 n-gram 模型和词频统计的中文分词算法,它具有高精度和性能,能够有效地处理中文文本数据,为 Elasticsearch 提供强大的中文处理能力。
2. 项目快速启动
以下是在 Elasticsearch 中集成和使用 Elasticsearch Analysis-ANSJ 插件的步骤:
首先,确保已经安装了 Elasticsearch。
# 下载 Elasticsearch Analysis-ANSJ 插件
./bin/elasticsearch-plugin install file:///path/to/elasticsearch-analysis-ansj-<version>.zip
# 或者使用以下命令,确保替换 <version> 为实际的版本号
./bin/elasticsearch-plugin install file:///path/to/elasticsearch-analysis-ansj-<version>.zip
接下来,配置 Elasticsearch 的 elasticsearch.yml 文件,添加以下内容:
index.analysis.analyzer.ansj_analyzer.type: custom
index.analysis.analyzer.ansj_analyzer.tokenizer: ansj
现在,您可以创建一个新的索引,并使用 ANSJ 分词器:
PUT /my_index
{
"settings": {
"analysis": {
"analyzer": {
"ansj_analyzer": {
"type": "custom",
"tokenizer": "ansj"
}
}
}
},
"mappings": {
"properties": {
"content": {
"type": "text",
"analyzer": "ansj_analyzer"
}
}
}
}
3. 应用案例和最佳实践
案例一:中文文本索引和搜索
# 索引文档
POST /my_index/_doc/1
{
"content": "Elasticsearch 是一个分布式、RESTful 搜索和分析引擎,适用于处理大数据。"
}
# 搜索文档
GET /my_index/_search
{
"query": {
"match": {
"content": "搜索引擎"
}
}
}
案例二:自定义分词规则
ANSJ 分词器支持自定义词典和停用词,以提高分词的准确性和效率。您可以在 elasticsearch.yml 中配置自定义词典路径:
index.analysis.analyzer.ansj_analyzer.tokenizer: ansj
index.analysis.analyzer.ansj_analyzer.stopwords_path: /path/to/your/stopwords.txt
index.analysis.analyzer.ansj_analyzer dictionary_path: /path/to/your/dictionary.txt
4. 典型生态项目
Elasticsearch 生态系统中,有许多项目可以与 Elasticsearch Analysis-ANSJ 插件配合使用,以下是一些典型的项目:
- Kibana:Elasticsearch 的可视化界面,用于数据探索和可视化。
- Logstash:数据管道,用于收集、转换和存储数据到 Elasticsearch。
- Beats:轻量级数据采集工具,用于发送数据到 Elasticsearch 或 Logstash。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695