Elasticsearch Analysis-ANSJ 插件最佳实践
2025-05-13 06:10:16作者:殷蕙予
1. 项目介绍
Elasticsearch Analysis-ANSJ 是一款针对 Elasticsearch 的中文分词插件。ANSJ 分词是一个基于 n-gram 模型和词频统计的中文分词算法,它具有高精度和性能,能够有效地处理中文文本数据,为 Elasticsearch 提供强大的中文处理能力。
2. 项目快速启动
以下是在 Elasticsearch 中集成和使用 Elasticsearch Analysis-ANSJ 插件的步骤:
首先,确保已经安装了 Elasticsearch。
# 下载 Elasticsearch Analysis-ANSJ 插件
./bin/elasticsearch-plugin install file:///path/to/elasticsearch-analysis-ansj-<version>.zip
# 或者使用以下命令,确保替换 <version> 为实际的版本号
./bin/elasticsearch-plugin install file:///path/to/elasticsearch-analysis-ansj-<version>.zip
接下来,配置 Elasticsearch 的 elasticsearch.yml 文件,添加以下内容:
index.analysis.analyzer.ansj_analyzer.type: custom
index.analysis.analyzer.ansj_analyzer.tokenizer: ansj
现在,您可以创建一个新的索引,并使用 ANSJ 分词器:
PUT /my_index
{
"settings": {
"analysis": {
"analyzer": {
"ansj_analyzer": {
"type": "custom",
"tokenizer": "ansj"
}
}
}
},
"mappings": {
"properties": {
"content": {
"type": "text",
"analyzer": "ansj_analyzer"
}
}
}
}
3. 应用案例和最佳实践
案例一:中文文本索引和搜索
# 索引文档
POST /my_index/_doc/1
{
"content": "Elasticsearch 是一个分布式、RESTful 搜索和分析引擎,适用于处理大数据。"
}
# 搜索文档
GET /my_index/_search
{
"query": {
"match": {
"content": "搜索引擎"
}
}
}
案例二:自定义分词规则
ANSJ 分词器支持自定义词典和停用词,以提高分词的准确性和效率。您可以在 elasticsearch.yml 中配置自定义词典路径:
index.analysis.analyzer.ansj_analyzer.tokenizer: ansj
index.analysis.analyzer.ansj_analyzer.stopwords_path: /path/to/your/stopwords.txt
index.analysis.analyzer.ansj_analyzer dictionary_path: /path/to/your/dictionary.txt
4. 典型生态项目
Elasticsearch 生态系统中,有许多项目可以与 Elasticsearch Analysis-ANSJ 插件配合使用,以下是一些典型的项目:
- Kibana:Elasticsearch 的可视化界面,用于数据探索和可视化。
- Logstash:数据管道,用于收集、转换和存储数据到 Elasticsearch。
- Beats:轻量级数据采集工具,用于发送数据到 Elasticsearch 或 Logstash。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140