RecBole-CDR 项目启动与配置教程
2025-05-12 17:39:45作者:宣利权Counsellor
1. 项目目录结构及介绍
RecBole-CDR 是一个基于 RecBole 的上下文感知推荐系统。下面是项目的目录结构及各部分的简要介绍:
RecBole-CDR/
├── data/ # 存放数据集和预处理后的数据
├── examples/ # 示例代码
├── notebooks/ # Jupyter 笔记本,用于数据处理和模型分析
├── recommendations/ # 推荐系统算法的实现
├── recbole/ # RecBole 库的副本,用于提供基础功能
├── tests/ # 测试代码
├── tools/ # 工具类代码,如数据预处理等
├── setup.py # 项目设置文件
├── requirements.txt # 项目依赖文件
└── README.md # 项目说明文件
data/:存放项目所需的数据集以及预处理后的数据。examples/:包含示例代码,用于展示如何使用 RecBole-CDR。notebooks/:包含 Jupyter 笔记本,用于数据处理和模型分析。recommendations/:包含推荐系统算法的实现代码。recbole/:包含 RecBole 库的副本,用于提供推荐系统的基础功能。tests/:包含测试代码,用于确保项目功能的正确性。tools/:包含工具类代码,如数据预处理和模型评估等。setup.py:项目设置文件,用于安装项目依赖。requirements.txt:项目依赖文件,列出项目所需的 Python 包。README.md:项目说明文件,包含项目介绍和使用说明。
2. 项目的启动文件介绍
项目的启动文件是 examples/ 目录下的 run.py。该文件用于启动推荐系统的训练和测试过程。以下是一个简单的启动文件示例:
from recommendations import CDRModel
from data import DataLoader
# 加载数据
data_loader = DataLoader()
train_data, valid_data, test_data = data_loader.load_data()
# 初始化模型
model = CDRModel()
# 训练模型
model.train(train_data, valid_data)
# 评估模型
model.evaluate(test_data)
在这个示例中,我们首先从 data 模块加载了数据,然后初始化了 CDRModel 类的实例,接着调用 train 方法进行训练,最后使用 evaluate 方法评估模型的效果。
3. 项目的配置文件介绍
项目的配置文件位于 examples/ 目录下的 config.json。该文件包含了模型训练和测试的配置信息,例如数据集路径、模型参数、训练参数等。以下是一个配置文件的示例:
{
"data_path": "data/dataset.csv",
"train_ratio": 0.8,
"valid_ratio": 0.1,
"test_ratio": 0.1,
"model_params": {
"embedding_size": 128,
"hidden_size": 256,
"num_heads": 4,
"dropout": 0.5
},
"train_params": {
"batch_size": 64,
"learning_rate": 0.001,
"num_epochs": 20
}
}
在这个配置文件中,我们指定了数据集的路径、训练集、验证集和测试集的比例,以及模型的一些参数(如嵌入向量大小、隐藏层大小等)和训练参数(如批量大小、学习率、训练轮数等)。这些配置信息将被 CDRModel 类读取并用于训练和测试过程。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
146
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19