Stable Diffusion WebUI 在NVIDIA RTX 50系列显卡上的兼容性问题与解决方案
问题背景
近期,许多用户在NVIDIA最新发布的RTX 50系列显卡(如RTX 5070 Ti、RTX 5090等)上运行Stable Diffusion WebUI时遇到了兼容性问题。主要症状表现为启动时出现警告信息:"NVIDIA GeForce RTX 5070 Ti with CUDA capability sm_120 is not compatible with the current PyTorch installation",随后模型加载失败。
技术原因分析
这一问题的根本原因在于PyTorch官方发布的稳定版本尚未支持RTX 50系列显卡的SM_120架构。当前稳定版的PyTorch仅支持到SM_50至SM_90的CUDA计算能力。RTX 50系列采用了新一代的Blackwell架构,需要PyTorch的夜间构建版(nightly build)才能提供完整的支持。
详细解决方案
手动安装PyTorch夜间构建版
-
首先需要卸载当前安装的PyTorch和TorchVision:
python -m pip uninstall torch torchvision -
然后安装支持CUDA 12.8的夜间构建版:
python -m pip install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cu128
注意事项
-
安装过程需要下载约3GB的文件,对于网络条件不佳的用户可能需要较长时间。
-
夜间构建版可能存在一些不稳定因素,建议定期更新以获取最新的修复和改进。
-
对于Linux用户,特别是Ubuntu系统,目前官方尚未提供预编译的夜间构建版,可能需要从源代码编译。
性能表现
根据用户反馈,在成功配置后,RTX 50系列显卡在Stable Diffusion WebUI中表现出色:
- 高分辨率修复和放大功能运行速度显著提升
- 图像生成速度相比前代RTX 40系列有显著提高
- 能够流畅处理更高分辨率的图像生成任务
替代方案
对于不想使用夜间构建版的用户,可以考虑以下替代方案:
-
使用Stable Diffusion的衍生版本,如Forge,这些项目可能已经整合了对新硬件的支持。
-
等待PyTorch官方发布支持SM_120架构的稳定版本。
总结
虽然当前Stable Diffusion WebUI在RTX 50系列显卡上的支持还存在一些挑战,但通过安装PyTorch的夜间构建版可以解决主要的兼容性问题。随着时间推移和软件更新,这一问题有望得到更完善的解决。对于追求稳定性的用户,建议关注官方更新动态,在稳定版发布后再进行升级。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00