UI-Lovelace-Minimalist项目中天气组件适配新版Home Assistant的解决方案
背景介绍
在Home Assistant 2024.4版本中,开发团队对天气实体(weather entity)进行了重大变更,移除了原有的forecast属性,转而采用新的weather.get_forecasts服务来获取天气预报数据。这一变更影响了众多依赖该属性的前端组件,包括UI-Lovelace-Minimalist项目中的天气弹窗功能。
问题分析
UI-Lovelace-Minimalist项目中的popup_weather_forecast弹窗组件原本直接调用天气实体的forecast属性来显示预报信息。随着2024.4版本的发布,这一直接访问方式已不再可用,导致组件无法正常显示天气预报数据。
技术解决方案
针对这一变更,我们可以通过创建模板传感器(template sensor)来桥接新旧数据格式,保持前端组件的兼容性。以下是具体实现方案:
template:
- trigger:
- platform: time_pattern
hours: /6
action:
- service: weather.get_forecasts
data:
type: daily
target:
entity_id: weather.aemet
response_variable: forecast_daily
sensor:
- name: Weather Forecast Daily
unique_id: weather_forecast_aemet_daily
state: "{{ states('sensor.aemet_condition') }}"
attributes:
forecast: "{{ forecast_daily['weather.aemet'].forecast }}"
方案详解
-
触发器设置:使用time_pattern触发器每6小时自动更新一次数据,确保预报信息的时效性。
-
服务调用:通过weather.get_forecasts服务获取最新的天气预报数据,指定type为daily表示获取每日预报。
-
目标指定:target参数明确指定要获取哪个天气实体的预报数据。
-
变量存储:将服务返回的结果存储在forecast_daily变量中。
-
传感器创建:构建一个模板传感器,其中:
- state保持与原始天气条件传感器一致
- attributes中添加forecast属性,从服务返回数据中提取所需预报信息
前端配置调整
完成传感器创建后,只需在UI-Lovelace-Minimalist的配置中将ulm_weather指向新创建的传感器即可:
ulm_weather: "sensor.aemet"
技术优势
-
向后兼容:该方案无需修改前端组件代码,保持了现有UI的完整性。
-
数据缓存:通过传感器缓存预报数据,减少对天气服务的直接调用。
-
灵活更新:可根据需要调整更新频率,平衡数据新鲜度和系统负载。
-
可扩展性:同样的模式可应用于其他需要预报数据的场景。
注意事项
-
确保Home Assistant版本确实为2024.4或更高,旧版本可能不支持新的服务调用方式。
-
根据实际天气实体名称调整配置中的weather.aemet和sensor.aemet_condition。
-
对于需要小时级预报的场景,可将type参数改为hourly并相应调整更新频率。
-
在多天气实体情况下,需要为每个实体创建对应的传感器桥接。
这一解决方案有效解决了新版Home Assistant中天气组件兼容性问题,为用户提供了平滑的升级过渡方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00