Locust性能测试中用户停止异常的分析与解决方案
2025-05-07 14:05:26作者:管翌锬
异常现象描述
在Locust 2.28版本中,当性能测试结束时,系统日志中频繁出现以下异常堆栈:
Traceback (most recent call last):
File "src/gevent/greenlet.py", line 908, in gevent._gevent_cgreenlet.Greenlet.run
File "/root/.local/share/virtualenvs/app-4PlAip0Q/lib/python3.10/site-packages/locust/user/users.py", line 208, in stop
Exception: Tried to stop User in an unexpected state: stopping. This should never happen.
该异常特别出现在设置了较长停止超时时间(LOCUST_STOP_TIMEOUT=600秒)的情况下,表明系统在尝试停止虚拟用户时出现了预期之外的状态。
技术背景分析
Locust作为分布式性能测试工具,其核心机制是通过gevent协程来管理大量虚拟用户(User)的并发执行。每个User都是一个独立的greenlet协程,在测试过程中会按照预设的任务流执行测试场景。
当测试停止时,Locust需要有序地终止所有正在运行的User实例。这个停止过程涉及多个状态转换:
- running → stopping (正常停止流程)
- stopping → stopped (完成停止)
异常信息表明系统在User已经是"stopping"状态时又尝试了停止操作,这违反了状态机的设计原则。
根本原因探究
根据实践经验,可能导致此问题的场景包括:
- 任务重试逻辑干扰:测试脚本中实现了自定义的重试机制,当遇到StopUser异常时没有正确处理,导致任务被重新执行
- 超时设置不合理:过长的LOCUST_STOP_TIMEOUT(600秒)可能导致停止过程中的竞态条件
- 自定义任务流设计:复杂的任务切换逻辑可能干扰User的正常生命周期管理
解决方案与实践建议
1. 正确处理停止信号
在自定义任务中,应当妥善捕获StopUser异常并立即终止执行:
from locust.exception import StopUser
@task
def my_task(self):
try:
# 正常任务逻辑
except StopUser:
raise # 直接重新抛出,不要捕获后重试
2. 优化停止超时设置
根据测试场景合理设置停止超时:
- 简单场景:30-60秒通常足够
- 复杂场景:建议不超过300秒
- 避免设置过长超时导致资源无法及时释放
3. 检查任务重试逻辑
移除任何可能干扰User生命周期的重试机制,特别是:
- 避免在catch块中重新执行任务
- 不要装饰@task为可重试的
4. 版本升级验证
虽然该问题在2.28版本出现,但建议:
- 验证最新版本是否已修复
- 检查版本间的变更日志中关于User状态管理的改进
最佳实践总结
- 保持任务逻辑简洁:避免在任务中添加复杂的状态管理
- 合理设置超时:根据实际场景调整,既不能太短导致正常任务被中断,也不能太长影响资源回收
- 明确停止流程:确保所有任务都能正确响应停止信号
- 监控资源释放:测试结束后验证所有资源(连接、会话等)是否被正确释放
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134