首页
/ Model Explorer 开源项目使用教程

Model Explorer 开源项目使用教程

2024-09-21 08:00:15作者:董灵辛Dennis

1. 项目介绍

Model Explorer 是一个现代化的模型图可视化和调试工具,由 Google AI Edge 团队开发。它提供了直观的层次化模型图可视化功能,能够帮助用户动态展开或折叠模型图的层次结构。此外,Model Explorer 还提供了一系列功能,如高亮输入和输出操作、节点元数据叠加、交互式弹出层显示、搜索功能、显示相同层、GPU 加速图渲染等,以促进模型探索和调试。

目前,Model Explorer 支持 TFLite、TF、TFJS、MLIR 和 PyTorch(导出的程序)模型格式,并提供了一个扩展框架,使开发者能够轻松添加对其他格式的支持。

2. 项目快速启动

安装

要开始使用 Model Explorer,首先需要安装它。可以通过以下命令进行安装:

pip install ai-edge-model-explorer

启动

安装完成后,可以通过以下命令启动 Model Explorer:

model-explorer

在 Colab 中使用

Model Explorer 也可以在 Google Colab 中使用。你可以通过以下链接尝试在 Colab 中使用 Model Explorer:

Model Explorer Colab 示例

3. 应用案例和最佳实践

案例1:模型架构理解

Model Explorer 可以帮助用户理解大型模型的架构。例如,在 MobileBert 模型中,用户可以清晰地看到自注意力掩码和嵌入层是如何输入到 Transformer 层的。通过展开嵌入层,用户可以了解不同类型嵌入之间的关系。

案例2:调试转换错误

在将模型部署到特定硬件(如手机或笔记本电脑)之前,模型必须经过转换过程。Model Explorer 提供了并排比较模式,帮助用户比较原始模型和优化后的模型。例如,用户可以比较 PyTorch 模型和 TensorFlow Lite 模型之间的转换差异,从而识别转换错误。

案例3:调试性能和数值精度

Model Explorer 还支持在模型图上叠加每个节点的数据,使用户能够根据这些数据对节点进行排序、搜索和样式化。结合层次化视图,用户可以快速定位性能或数值问题,并进行相应的调整。

4. 典型生态项目

TensorFlow Lite

TensorFlow Lite 是 Google 推出的一个轻量级深度学习框架,专为移动和嵌入式设备设计。Model Explorer 与 TensorFlow Lite 紧密集成,帮助开发者优化和调试在移动设备上运行的模型。

PyTorch

PyTorch 是一个流行的深度学习框架,广泛应用于研究和生产环境。Model Explorer 支持 PyTorch 模型格式,使 PyTorch 用户能够更好地理解和调试他们的模型。

JAX

JAX 是一个用于高性能数值计算的库,特别适用于机器学习和科学计算。Model Explorer 支持 JAX 模型格式,帮助用户可视化和调试复杂的计算图。

通过以上模块的介绍,用户可以快速上手并深入了解 Model Explorer 的功能和应用场景。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5