Model Explorer 开源项目使用教程
1. 项目介绍
Model Explorer 是一个现代化的模型图可视化和调试工具,由 Google AI Edge 团队开发。它提供了直观的层次化模型图可视化功能,能够帮助用户动态展开或折叠模型图的层次结构。此外,Model Explorer 还提供了一系列功能,如高亮输入和输出操作、节点元数据叠加、交互式弹出层显示、搜索功能、显示相同层、GPU 加速图渲染等,以促进模型探索和调试。
目前,Model Explorer 支持 TFLite、TF、TFJS、MLIR 和 PyTorch(导出的程序)模型格式,并提供了一个扩展框架,使开发者能够轻松添加对其他格式的支持。
2. 项目快速启动
安装
要开始使用 Model Explorer,首先需要安装它。可以通过以下命令进行安装:
pip install ai-edge-model-explorer
启动
安装完成后,可以通过以下命令启动 Model Explorer:
model-explorer
在 Colab 中使用
Model Explorer 也可以在 Google Colab 中使用。你可以通过以下链接尝试在 Colab 中使用 Model Explorer:
3. 应用案例和最佳实践
案例1:模型架构理解
Model Explorer 可以帮助用户理解大型模型的架构。例如,在 MobileBert 模型中,用户可以清晰地看到自注意力掩码和嵌入层是如何输入到 Transformer 层的。通过展开嵌入层,用户可以了解不同类型嵌入之间的关系。
案例2:调试转换错误
在将模型部署到特定硬件(如手机或笔记本电脑)之前,模型必须经过转换过程。Model Explorer 提供了并排比较模式,帮助用户比较原始模型和优化后的模型。例如,用户可以比较 PyTorch 模型和 TensorFlow Lite 模型之间的转换差异,从而识别转换错误。
案例3:调试性能和数值精度
Model Explorer 还支持在模型图上叠加每个节点的数据,使用户能够根据这些数据对节点进行排序、搜索和样式化。结合层次化视图,用户可以快速定位性能或数值问题,并进行相应的调整。
4. 典型生态项目
TensorFlow Lite
TensorFlow Lite 是 Google 推出的一个轻量级深度学习框架,专为移动和嵌入式设备设计。Model Explorer 与 TensorFlow Lite 紧密集成,帮助开发者优化和调试在移动设备上运行的模型。
PyTorch
PyTorch 是一个流行的深度学习框架,广泛应用于研究和生产环境。Model Explorer 支持 PyTorch 模型格式,使 PyTorch 用户能够更好地理解和调试他们的模型。
JAX
JAX 是一个用于高性能数值计算的库,特别适用于机器学习和科学计算。Model Explorer 支持 JAX 模型格式,帮助用户可视化和调试复杂的计算图。
通过以上模块的介绍,用户可以快速上手并深入了解 Model Explorer 的功能和应用场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00