Model Explorer 开源项目使用教程
1. 项目介绍
Model Explorer 是一个现代化的模型图可视化和调试工具,由 Google AI Edge 团队开发。它提供了直观的层次化模型图可视化功能,能够帮助用户动态展开或折叠模型图的层次结构。此外,Model Explorer 还提供了一系列功能,如高亮输入和输出操作、节点元数据叠加、交互式弹出层显示、搜索功能、显示相同层、GPU 加速图渲染等,以促进模型探索和调试。
目前,Model Explorer 支持 TFLite、TF、TFJS、MLIR 和 PyTorch(导出的程序)模型格式,并提供了一个扩展框架,使开发者能够轻松添加对其他格式的支持。
2. 项目快速启动
安装
要开始使用 Model Explorer,首先需要安装它。可以通过以下命令进行安装:
pip install ai-edge-model-explorer
启动
安装完成后,可以通过以下命令启动 Model Explorer:
model-explorer
在 Colab 中使用
Model Explorer 也可以在 Google Colab 中使用。你可以通过以下链接尝试在 Colab 中使用 Model Explorer:
3. 应用案例和最佳实践
案例1:模型架构理解
Model Explorer 可以帮助用户理解大型模型的架构。例如,在 MobileBert 模型中,用户可以清晰地看到自注意力掩码和嵌入层是如何输入到 Transformer 层的。通过展开嵌入层,用户可以了解不同类型嵌入之间的关系。
案例2:调试转换错误
在将模型部署到特定硬件(如手机或笔记本电脑)之前,模型必须经过转换过程。Model Explorer 提供了并排比较模式,帮助用户比较原始模型和优化后的模型。例如,用户可以比较 PyTorch 模型和 TensorFlow Lite 模型之间的转换差异,从而识别转换错误。
案例3:调试性能和数值精度
Model Explorer 还支持在模型图上叠加每个节点的数据,使用户能够根据这些数据对节点进行排序、搜索和样式化。结合层次化视图,用户可以快速定位性能或数值问题,并进行相应的调整。
4. 典型生态项目
TensorFlow Lite
TensorFlow Lite 是 Google 推出的一个轻量级深度学习框架,专为移动和嵌入式设备设计。Model Explorer 与 TensorFlow Lite 紧密集成,帮助开发者优化和调试在移动设备上运行的模型。
PyTorch
PyTorch 是一个流行的深度学习框架,广泛应用于研究和生产环境。Model Explorer 支持 PyTorch 模型格式,使 PyTorch 用户能够更好地理解和调试他们的模型。
JAX
JAX 是一个用于高性能数值计算的库,特别适用于机器学习和科学计算。Model Explorer 支持 JAX 模型格式,帮助用户可视化和调试复杂的计算图。
通过以上模块的介绍,用户可以快速上手并深入了解 Model Explorer 的功能和应用场景。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









