RiverQueue项目中多队列任务调度与清理机制实践
2025-06-16 18:45:30作者:蔡丛锟
背景介绍
RiverQueue是一个基于PostgreSQL的任务队列系统,它允许开发者构建复杂的分布式任务处理系统。在实际生产环境中,我们经常需要处理这样的场景:一个主任务执行完成后,需要安排后续的清理任务在特定时间执行。本文将详细介绍如何在RiverQueue中实现这种主任务与延时清理任务的协同工作。
系统架构设计
在本文介绍的实现中,系统采用了双队列架构:
- 默认队列:处理主要的任务分配和资源调度工作
- 取消队列:专门处理后续的清理和取消操作
这种设计将不同性质的任务隔离到不同的队列中,既保证了系统的清晰性,又能针对不同类型的任务设置不同的并发策略。
实现细节
队列初始化
系统初始化时,我们创建了两个队列并配置了各自的Worker数量:
riverClient, err := river.NewClient(riverpgxv5.New(dbPool), &river.Config{
Logger: slog.New(&slogutil.SlogMessageOnlyHandler{Level: slog.LevelWarn}),
Queues: map[string]river.QueueConfig{
river.QueueDefault: {MaxWorkers: queueMaxWorkers},
"cancel_queue": {MaxWorkers: queueMaxWorkers},
},
Workers: workers,
})
Worker注册
系统注册了两种Worker类型:
- JobWorker:处理主要的任务调度工作
- CleanupWorker:处理后续的清理工作
func (EasyBackfill) AddWorkers(workers *river.Workers) {
river.AddWorker(workers, &work.JobWorker{})
river.AddWorker(workers, &work.CleanupWorker{})
}
任务链式调用
在主任务(JobWorker)执行完成后,它会安排一个延时执行的清理任务:
func (w JobWorker) Work(ctx context.Context, job *river.Job[JobArgs]) error {
// 主任务处理逻辑...
return SubmitCleanup(ctx, pool, 10, int64(fluxID), true, []string{})
}
清理任务提交
清理任务的提交函数展示了如何在RiverQueue中安排延时任务:
func SubmitCleanup(
ctx context.Context,
pool *pgxpool.Pool,
seconds int32,
fluxID int64,
inKubernetes bool,
tags []string,
) error {
client, err := river.ClientFromContextSafely[pgx.Tx](ctx)
// 错误处理...
// 计算任务执行时间
now := time.Now()
scheduledAt := now.Add(time.Second * time.Duration(seconds))
insertOpts := river.InsertOpts{
MaxAttempts: defaults.MaxAttempts,
Tags: tags,
Queue: "cancel_queue", // 关键点:指定正确的队列名称
ScheduledAt: scheduledAt,
}
// 插入任务到指定队列...
}
关键问题与解决方案
在实际实现中,开发者可能会遇到清理任务没有按预期执行的情况。这通常是由于以下原因造成的:
- 队列名称不匹配:在任务提交时指定的队列名称必须与初始化时配置的队列名称完全一致
- Worker注册遗漏:确保所有类型的Worker都已正确注册
- 时间计算错误:延时任务的时间计算需要准确
在本文案例中,问题出在队列名称不一致上:初始化时配置的是"cancel_queue",但提交任务时错误地使用了"cleanup_queue"。这种细微的差别会导致任务被提交到不存在的队列中,从而无法被执行。
最佳实践
- 队列命名:保持队列命名一致,可以考虑使用常量或枚举来管理队列名称
- 日志记录:在任务提交和执行的关键节点添加日志,便于问题排查
- 错误处理:对ClientFromContextSafely等关键操作进行完善的错误处理
- 事务管理:确保任务提交过程中的事务正确处理
总结
RiverQueue提供了灵活的任务队列管理能力,通过合理设计队列结构和任务链,可以实现复杂的任务调度场景。本文介绍的多队列协作模式适用于需要后续清理或回调的业务场景,如资源预定系统、定时任务系统等。关键在于确保队列配置、Worker注册和任务提交各环节的一致性,并通过完善的日志和错误处理机制保证系统可靠性。
通过这种设计,开发者可以构建出既清晰又可扩展的任务处理系统,满足各种复杂的业务需求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C027
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
423
3.25 K
Ascend Extension for PyTorch
Python
231
262
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869