Burger 项目技术文档
Burger 是一个用于自动从 Minecraft 游戏中提取数据的“框架”,旨在编写协议规范、实现互操作性以及其他有趣的用途。本文档将详细介绍如何安装、使用 Burger 项目,并提供 API 使用说明。
1. 安装指南
1.1 环境要求
- Python 3.x
- Minecraft 客户端 JAR 文件(可选)
1.2 安装步骤
-
克隆或下载 Burger 项目到本地。
-
确保已安装 Python 3.x。
-
在项目目录中运行以下命令以安装依赖项(如果有):
pip install -r requirements.txt
2. 项目的使用说明
2.1 基本使用
Burger 的核心功能是通过 munch.py 脚本来提取 Minecraft 游戏数据。以下是一些基本的使用方法:
-
下载 Minecraft 客户端:使用
-d或--download参数下载指定版本的 Minecraft 客户端。例如:python munch.py --download 1.13.2如果要下载最新的快照版本,可以使用
-D或--download-latest参数:python munch.py -D -
指定客户端 JAR 文件:如果你已经拥有 Minecraft 客户端 JAR 文件,可以直接将其作为参数传递给
munch.py:python munch.py 1.8.jar -
输出重定向:默认情况下,输出会打印到标准输出(stdout)。你可以使用
-o或--output参数将输出重定向到文件:python munch.py -D --output output.json -
查看可用的 Toppings:使用
-l或--list参数查看所有可用的 Toppings:python munch.py --list -
运行特定的 Toppings:使用
-t或--toppings参数运行特定的 Toppings。例如,只提取语言信息和统计数据:python munch.py -D --toppings language,stats
3. 项目 API 使用文档
3.1 Toppings 机制
Burger 的核心概念是“Toppings”,每个 Topping 可以提供和满足简单的依赖关系。Toppings 可以单独运行,也可以组合运行。munch.py 脚本会将所有 Toppings 聚合在一起,并输出为 JSON 字典。
3.2 自定义 Toppings
你可以根据需要创建自定义的 Toppings。每个 Topping 需要实现特定的接口,并注册到 Burger 框架中。具体实现可以参考项目中的现有 Toppings。
4. 项目安装方式
4.1 从 GitHub 安装
- 访问 Burger 项目的 GitHub 仓库。
- 克隆或下载项目到本地。
- 按照上述“安装指南”中的步骤进行安装。
4.2 使用 Docker 安装(可选)
如果你希望使用 Docker 来运行 Burger 项目,可以按照以下步骤操作:
-
确保已安装 Docker。
-
在项目目录中创建 Dockerfile(如果尚未存在)。
-
构建 Docker 镜像:
docker build -t burger . -
运行 Docker 容器:
docker run -it burger python munch.py --download 1.13.2
通过以上步骤,你可以轻松安装并使用 Burger 项目,提取 Minecraft 游戏中的数据,并根据需要进行自定义开发。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00