Apache Arrow-RS项目中的Parquet二进制数据读写问题解析
在Apache Arrow-RS项目中,开发人员发现了一个关于Parquet格式文件读写的重要技术问题:当使用arrow-rs库写入包含大量二进制数据的Parquet文件时,如果每行数据达到或超过8,388,855字节,使用pyarrow库将无法正确读取这些文件。
问题背景
Parquet作为一种列式存储格式,被广泛应用于大数据处理领域。Arrow-RS是Apache Arrow项目的Rust实现,提供了高效的内存数据结构与计算能力。在实际应用中,开发人员发现当处理包含大量二进制数据(如HTML内容)的记录时,某些特定条件下生成的文件会出现兼容性问题。
问题现象
具体表现为:
- 使用arrow-rs写入包含大二进制数据(≥8,388,855字节/行)的Parquet文件
- 使用pyarrow读取时抛出"Couldn't deserialize thrift"错误
- 相同文件通过arrow-rs或DuckDB读取正常
- 减少每行数据量后问题消失
技术分析
经过深入分析,发现问题根源在于统计信息(statistics)的处理机制:
-
统计信息截断机制失效:arrow-rs在处理页面级统计信息时,未正确应用statistics_truncate_length参数,导致统计信息可能变得过大。
-
PyArrow限制:PyArrow对统计信息头的大小存在限制(约8MB),超过此限制会导致反序列化失败。
-
统计信息类型影响:
- 禁用统计信息(EnabledStatistics.NONE)时无问题
- 块级统计信息(EnabledStatistics.CHUNK)不受影响
- 页面级统计信息(EnabledStatistics.PAGE)会触发问题
解决方案
项目团队通过以下方式解决了该问题:
-
修复统计信息截断:确保页面级统计信息正确应用truncate_length参数。
-
合理默认值:为统计信息截断长度设置合理的默认值(如64字节),避免生成过大的统计信息头。
-
性能优化:注意到页面级统计信息会使文件体积显著增加(约3倍),计划进一步优化。
最佳实践建议
基于此问题的经验,建议开发人员:
-
对于包含大二进制数据的列,考虑禁用或限制统计信息生成。
-
明确设置statistics_truncate_length参数,避免依赖默认值。
-
根据实际需求选择适当的统计信息级别,权衡查询性能与存储开销。
-
在跨语言/工具使用Parquet文件时,进行充分的兼容性测试。
这个问题及其解决方案不仅提高了Arrow-RS与PyArrow的互操作性,也为大数据处理中二进制数据的存储优化提供了重要参考。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00