YTsaurus项目中Arrow格式在Job代理中的支持与应用
2025-07-05 12:57:48作者:咎岭娴Homer
背景介绍
YTsaurus作为分布式数据处理平台,其数据处理能力很大程度上依赖于高效的数据序列化格式。在数据处理流程中,格式转换往往成为性能瓶颈之一。本文将重点介绍YTsaurus 23.2版本中对Arrow格式在Job代理中的支持情况及其实际应用价值。
Arrow格式在YTsaurus中的演进
在YTsaurus早期版本中,Arrow格式仅支持通过网络接口读取数据,而在Job代理中并不支持。这导致用户在处理数据时需要经历多次格式转换:
- 读取YSON格式数据
- 转换为Python对象
- 批处理
- 转换为Pandas/Polars/PyArrow等数据框
- 执行向量化操作
这种转换链条中,格式转换环节(特别是Python对象创建)消耗了大量时间,在某些场景下甚至占据了总处理时间的绝大部分。
性能对比
实际测试表明,当使用网络接口直接读取Arrow格式数据时,相比传统YSON处理流程可以获得5-10倍的性能提升。例如,一个原本需要2小时完成的任务,在使用Arrow格式后仅需10分钟左右。
23.2版本的关键改进
YTsaurus 23.2版本通过关键提交实现了Job代理对Arrow格式的完整支持。这一改进使得用户可以在MapReduce作业中直接使用Arrow格式作为输入和输出,完全避免了中间格式转换带来的性能损耗。
实际应用示例
以下代码展示了如何在23.2版本中使用Arrow格式:
from yt.wrapper.format import ArrowFormat
from yt.wrapper.schema import TableSchema
from yt.wrapper import TablePath
import yt.type_info as yt_type_info
# 创建客户端连接
client = create_yt_client()
# 定义表结构
schema = TableSchema().add_column("a", yt_type_info.Int64).build_schema_sorted_by("a")
# 写入测试数据
client.write_table(TablePath("//tmp/input", schema=schema), [{"a": i} for i in range(10)])
# 使用Arrow格式运行Map作业
client.run_map(
"cat",
"//tmp/input",
"//tmp/output",
input_format=ArrowFormat(raw=True),
output_format=ArrowFormat(raw=True),
)
技术实现要点
- 原始模式支持:通过设置
raw=True参数,可以直接处理原始的Arrow数据,无需额外解析 - 类型系统集成:与YTsaurus的类型系统(如
yt_type_info)无缝集成 - 性能优化:避免了Python对象创建的中间环节,直接进行向量化处理
版本兼容性说明
需要注意的是,Arrow格式在Job代理中的完整支持是从23.2版本开始引入的。用户在使用时应确保集群版本符合要求,否则会遇到"Unsupported input format"错误。
总结
YTsaurus 23.2版本对Arrow格式的完整支持为数据密集型应用带来了显著的性能提升。这一改进特别适合以下场景:
- 需要频繁进行向量化运算的应用
- 大数据量的批处理作业
- 使用Pandas/Polars等数据分析库的工作流
随着Arrow格式支持的完善,YTsaurus在高效数据处理方面又迈出了重要一步,为用户提供了更多性能优化的可能性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
642
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
642