YTsaurus项目中Arrow格式在Job代理中的支持与应用
2025-07-05 01:25:34作者:咎岭娴Homer
背景介绍
YTsaurus作为分布式数据处理平台,其数据处理能力很大程度上依赖于高效的数据序列化格式。在数据处理流程中,格式转换往往成为性能瓶颈之一。本文将重点介绍YTsaurus 23.2版本中对Arrow格式在Job代理中的支持情况及其实际应用价值。
Arrow格式在YTsaurus中的演进
在YTsaurus早期版本中,Arrow格式仅支持通过网络接口读取数据,而在Job代理中并不支持。这导致用户在处理数据时需要经历多次格式转换:
- 读取YSON格式数据
- 转换为Python对象
- 批处理
- 转换为Pandas/Polars/PyArrow等数据框
- 执行向量化操作
这种转换链条中,格式转换环节(特别是Python对象创建)消耗了大量时间,在某些场景下甚至占据了总处理时间的绝大部分。
性能对比
实际测试表明,当使用网络接口直接读取Arrow格式数据时,相比传统YSON处理流程可以获得5-10倍的性能提升。例如,一个原本需要2小时完成的任务,在使用Arrow格式后仅需10分钟左右。
23.2版本的关键改进
YTsaurus 23.2版本通过关键提交实现了Job代理对Arrow格式的完整支持。这一改进使得用户可以在MapReduce作业中直接使用Arrow格式作为输入和输出,完全避免了中间格式转换带来的性能损耗。
实际应用示例
以下代码展示了如何在23.2版本中使用Arrow格式:
from yt.wrapper.format import ArrowFormat
from yt.wrapper.schema import TableSchema
from yt.wrapper import TablePath
import yt.type_info as yt_type_info
# 创建客户端连接
client = create_yt_client()
# 定义表结构
schema = TableSchema().add_column("a", yt_type_info.Int64).build_schema_sorted_by("a")
# 写入测试数据
client.write_table(TablePath("//tmp/input", schema=schema), [{"a": i} for i in range(10)])
# 使用Arrow格式运行Map作业
client.run_map(
"cat",
"//tmp/input",
"//tmp/output",
input_format=ArrowFormat(raw=True),
output_format=ArrowFormat(raw=True),
)
技术实现要点
- 原始模式支持:通过设置
raw=True参数,可以直接处理原始的Arrow数据,无需额外解析 - 类型系统集成:与YTsaurus的类型系统(如
yt_type_info)无缝集成 - 性能优化:避免了Python对象创建的中间环节,直接进行向量化处理
版本兼容性说明
需要注意的是,Arrow格式在Job代理中的完整支持是从23.2版本开始引入的。用户在使用时应确保集群版本符合要求,否则会遇到"Unsupported input format"错误。
总结
YTsaurus 23.2版本对Arrow格式的完整支持为数据密集型应用带来了显著的性能提升。这一改进特别适合以下场景:
- 需要频繁进行向量化运算的应用
- 大数据量的批处理作业
- 使用Pandas/Polars等数据分析库的工作流
随着Arrow格式支持的完善,YTsaurus在高效数据处理方面又迈出了重要一步,为用户提供了更多性能优化的可能性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319