Dynamo项目中PD解耦架构下的KV缓存与状态传递机制解析
2025-06-17 00:45:53作者:温艾琴Wonderful
前言
在大型语言模型推理优化领域,Dynamo项目提出了一种创新的Prefill-Decode(PD)解耦架构,通过将预填充和解码阶段分离到不同工作节点来实现高效并行处理。本文将深入分析该架构中关键的状态传递机制,特别是KV缓存和隐藏状态的传输处理方式。
PD解耦架构核心设计
Dynamo的PD解耦架构将推理过程分为两个主要阶段:
- PrefillWorker(预填充工作节点):负责处理初始提示词(prompt)的KV缓存计算
- DecodeWorker(解码工作节点):负责执行自回归解码生成
这种解耦设计的关键在于如何高效地在两个工作节点间传递必要的计算状态。
KV缓存传递机制
对于包含N个token的提示词,系统采用了一种巧妙的处理方式:
- PrefillWorker计算前N-1个token的KV缓存
- 通过专门的write_blocks模块将这些KV缓存传输给DecodeWorker
- DecodeWorker接收KV缓存后,仅需计算第N个token的相关信息
这种设计避免了传输完整的N个token计算结果,显著减少了节点间通信开销。
隐藏状态处理策略
值得注意的是,系统对隐藏状态(hidden_states)采用了不同的处理策略:
- PrefillWorker虽然会计算前N-1个token的隐藏状态,但这些状态实际上会被丢弃
- DecodeWorker基于接收到的KV缓存,自行计算第N个token的完整状态(包括KV缓存和隐藏状态)
- 这种设计完全避免了隐藏状态在节点间的传输需求
解码阶段的特殊处理
在DecodeWorker中,系统通过以下方式确保正确处理部分计算结果:
- 将前N-1个token标记为已计算状态
- 设置序列状态为Decode模式
- 这种配置确保vLLM引擎仅对第N个token执行解码步骤
扩展应用:自定义缓存传递
对于需要传递额外缓存信息(如卷积层缓存)的场景,Dynamo项目提供了DynamoNcclConnector等通信组件。这些组件可以扩展用于传输模型特定的缓存数据,为定制化需求提供了灵活解决方案。
架构优势分析
这种设计带来了几个显著优势:
- 通信开销最小化:仅传输必要的KV缓存,避免隐藏状态等冗余数据传输
- 计算效率优化:合理分配计算负载,充分利用各工作节点的计算资源
- 架构灵活性:通过可扩展的通信接口支持各种定制化需求
总结
Dynamo项目的PD解耦架构通过精心设计的KV缓存传递机制和状态处理策略,在保持模型推理准确性的同时,显著提升了大规模语言模型推理的效率。这种架构不仅适用于标准Transformer模型,其模块化设计也为各种变体模型提供了良好的支持基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178