Dynamo项目中PD解耦架构下的KV缓存与状态传递机制解析
2025-06-17 04:45:30作者:温艾琴Wonderful
前言
在大型语言模型推理优化领域,Dynamo项目提出了一种创新的Prefill-Decode(PD)解耦架构,通过将预填充和解码阶段分离到不同工作节点来实现高效并行处理。本文将深入分析该架构中关键的状态传递机制,特别是KV缓存和隐藏状态的传输处理方式。
PD解耦架构核心设计
Dynamo的PD解耦架构将推理过程分为两个主要阶段:
- PrefillWorker(预填充工作节点):负责处理初始提示词(prompt)的KV缓存计算
- DecodeWorker(解码工作节点):负责执行自回归解码生成
这种解耦设计的关键在于如何高效地在两个工作节点间传递必要的计算状态。
KV缓存传递机制
对于包含N个token的提示词,系统采用了一种巧妙的处理方式:
- PrefillWorker计算前N-1个token的KV缓存
- 通过专门的write_blocks模块将这些KV缓存传输给DecodeWorker
- DecodeWorker接收KV缓存后,仅需计算第N个token的相关信息
这种设计避免了传输完整的N个token计算结果,显著减少了节点间通信开销。
隐藏状态处理策略
值得注意的是,系统对隐藏状态(hidden_states)采用了不同的处理策略:
- PrefillWorker虽然会计算前N-1个token的隐藏状态,但这些状态实际上会被丢弃
- DecodeWorker基于接收到的KV缓存,自行计算第N个token的完整状态(包括KV缓存和隐藏状态)
- 这种设计完全避免了隐藏状态在节点间的传输需求
解码阶段的特殊处理
在DecodeWorker中,系统通过以下方式确保正确处理部分计算结果:
- 将前N-1个token标记为已计算状态
- 设置序列状态为Decode模式
- 这种配置确保vLLM引擎仅对第N个token执行解码步骤
扩展应用:自定义缓存传递
对于需要传递额外缓存信息(如卷积层缓存)的场景,Dynamo项目提供了DynamoNcclConnector等通信组件。这些组件可以扩展用于传输模型特定的缓存数据,为定制化需求提供了灵活解决方案。
架构优势分析
这种设计带来了几个显著优势:
- 通信开销最小化:仅传输必要的KV缓存,避免隐藏状态等冗余数据传输
- 计算效率优化:合理分配计算负载,充分利用各工作节点的计算资源
- 架构灵活性:通过可扩展的通信接口支持各种定制化需求
总结
Dynamo项目的PD解耦架构通过精心设计的KV缓存传递机制和状态处理策略,在保持模型推理准确性的同时,显著提升了大规模语言模型推理的效率。这种架构不仅适用于标准Transformer模型,其模块化设计也为各种变体模型提供了良好的支持基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
268
308

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3