CVAT项目中2D立方体标注在Datumaro导出格式中的缺失问题分析
背景介绍
CVAT作为一款开源的计算机视觉标注工具,广泛应用于各类图像和视频标注任务。在三维物体标注场景中,CVAT支持2D立方体(cuboid)的标注方式,这种标注方法允许用户在二维图像上标注三维物体的边界框。然而,近期有用户反馈在将标注结果导出为Datumaro格式时,2D立方体的坐标信息出现了缺失问题。
问题本质
经过技术分析,我们发现这实际上是一个格式支持范围与用户预期之间的差异问题。Datumaro格式在CVAT中的实现目前仅支持3D立方体的数据表示,而无法兼容2D立方体的标注信息。这种设计源于Datumaro格式最初针对的是三维点云数据的应用场景。
技术解决方案
对于需要导出2D立方体标注的用户,我们推荐采用以下替代方案:
-
使用CVAT原生格式:选择"CVAT for images"格式进行导出,该格式完整保留了所有2D标注信息,包括立方体数据。
-
格式转换工作流:可以先将标注导出为CVAT原生格式,再通过其他工具转换为所需的目标格式。
最佳实践建议
-
在进行复杂标注项目前,建议先小规模测试不同导出格式对特定标注类型的支持情况。
-
对于混合标注项目(同时包含2D和3D标注),可以考虑将不同类型的标注分开导出处理。
-
定期关注CVAT的版本更新,因为格式支持范围可能会随着版本迭代而扩展。
未来展望
随着计算机视觉应用场景的多样化,我们预期CVAT团队将会持续优化各种标注类型的格式支持。特别是对于2D立方体这种介于2D和3D之间的标注形式,未来可能会在Datumaro或其他导出格式中获得原生支持。建议用户关注官方更新日志以获取最新进展。
总结
理解工具对不同标注类型的支持限制是高效使用CVAT的关键。虽然当前Datumaro格式对2D立方体的支持存在限制,但通过选择合适的替代格式,用户仍然可以完整地导出和使用这些标注数据。这也提醒我们,在开始大型标注项目前,对工具链的全面测试至关重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00