Docker 容器中的 RabbitMQ 实例教程
Docker 容器中的 RabbitMQ 实例教程
1. 项目的目录结构及介绍
在 docker-library/rabbitmq 仓库中,主要的目录结构如下:
Dockerfile- 这是构建 Docker 镜像的核心文件,包含了如何从基础镜像构建 RabbitMQ 的步骤。3-management- 这个子目录包含了用于构建包含管理界面的 RabbitMQ Docker 镜像的 Dockerfile。3- 该子目录下的 Dockerfile 则用于构建不带管理界面的基础镜像。scripts- 包含了一些脚本,用于初始化 RabbitMQ 配置,例如设置环境变量和启动命令等。.github- 存储 GitHub 相关的自动化配置,如 Workflows。
这些文件和目录共同作用于创建可运行的 Docker 镜像,提供了一个预配置的 RabbitMQ 环境。
2. 项目的启动文件介绍
启动 RabbitMQ 服务主要通过 Docker Compose 或单独运行 Docker 命令来实现。在 Dockerfile 中定义了启动命令,例如:
CMD ["rabbitmq-server"]
这表示当容器启动时,会执行 rabbitmq-server 命令启动 RabbitMQ 服务器。
如果你想要自定义配置,可以使用环境变量。例如,你可以通过 -e RABBITMQ_DEFAULT_USER=admin -e RABBITMQ_DEFAULT_PASS=password 来设置默认的用户名和密码。对于更复杂的设置,可以通过挂载卷的方式将本地的 erlang cookie 和 rabbitmq.conf 文件映射到容器内对应的路径。
使用 Docker 命令示例:
docker run -d --name rabbitmq \
-p 5672:5672 -p 15672:15672 \
-e RABBITMQ_DEFAULT_USER=admin \
-e RABBITMQ_DEFAULT_PASS=password \
docker.io/library/rabbitmq:3-management
3. 项目的配置文件介绍
RabbitMQ 的主要配置文件是 rabbitmq.conf。虽然 Dockerfile 不直接包含此文件,但你可以通过挂载宿主机上的配置文件至容器内的 /etc/rabbitmq/ 路径来应用你的配置。例如:
docker run -v /path/to/your/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \
-d --name rabbitmq \
-p 5672:5672 -p 15672:15672 \
-e RABBITMQ_DEFAULT_USER=admin \
-e RABBITMQ_DEFAULT_PASS=password \
docker.io/library/rabbitmq:3-management
rabbitmq.conf 文件里的选项很多,包括绑定端口、集群设置、日志级别等等。具体配置项可以在 RabbitMQ 官方文档 查看。
请注意,RabbitMQ 还依赖一个名为 erlang.cookie 的安全文件,用于节点间的认证。若要跨容器或跨主机创建集群,需要保证所有节点的 erlang.cookie 文件内容相同。这个文件通常位于 /var/lib/rabbitmq/.erlang.cookie,同样可以通过挂载卷来同步。
以上就是基于 docker-library/rabbitmq 的简要教程,希望对你构建和管理 Docker 中的 RabbitMQ 有所帮助。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00