在Next.js项目中集成Pino日志系统的实践指南
2025-05-14 10:58:04作者:鲍丁臣Ursa
前言
在现代Web应用开发中,日志记录系统是必不可少的基础设施。Pino作为Node.js生态中高性能的日志记录器,以其出色的性能和灵活的扩展性受到开发者青睐。本文将详细介绍如何在Next.js框架中集成Pino日志系统,并实现跨客户端和服务端的统一日志管理。
核心需求分析
在Next.js项目中集成Pino需要解决几个关键问题:
- 环境适配:需要同时支持浏览器环境和服务器环境
- 请求追踪:需要自动关联请求ID和用户标识
- 日志传输:需要支持将日志发送到Logflare等日志服务
- 统一接口:需要提供一致的API供客户端和服务器端使用
基础日志器配置
首先,我们创建一个基础日志器配置,根据环境决定是否启用Logflare集成:
import pino from 'pino';
import { createPinoBrowserSend, createWriteStream } from "pino-logflare"
// 判断是否为预览或生产环境
const isPreviewOrProduction = process.env.VERCEL_ENV === 'preview' || process.env.VERCEL_ENV === 'production';
let baseLogger: pino.Logger;
if (isPreviewOrProduction && process.env.NEXT_PUBLIC_LOGFLARE_KEY && process.env.NEXT_PUBLIC_LOGFLARE_SOURCE) {
// 生产环境配置Logflare集成
const stream = createWriteStream({
apiKey: process.env.NEXT_PUBLIC_LOGFLARE_KEY,
sourceToken: process.env.NEXT_PUBLIC_LOGFLARE_SOURCE,
});
const send = createPinoBrowserSend({
apiKey: process.env.NEXT_PUBLIC_LOGFLARE_KEY,
sourceToken: process.env.NEXT_PUBLIC_LOGFLARE_SOURCE,
});
baseLogger = pino({
browser: {
transmit: {
level: "info",
send: send,
}
},
level: "debug",
base: {
env: process.env.VERCEL_ENV || process.env.NODE_ENV,
release: process.env.NEXT_PUBLIC_APP_VERSION,
},
}, stream);
} else {
// 开发环境基础配置
baseLogger = pino({
level: "debug",
base: {
env: process.env.VERCEL_ENV || process.env.NODE_ENV,
release: process.env.NEXT_PUBLIC_APP_VERSION,
},
});
}
环境感知日志器工厂
为了实现在不同环境下自动适配的日志器,我们创建了一个日志器工厂函数:
const getLogger = (name: string, req?: NextRequest) => {
if (typeof window !== "undefined") {
// 浏览器环境处理逻辑
const cookies = document.cookie;
const cookieKeyValues = cookies.split(";").map((cookie) => cookie.trim().split("="));
const posthog = cookieKeyValues.find(([key]) => key === posthogCookieName);
let correlationId = null;
if (posthog) {
try {
const value = JSON.parse(decodeURIComponent(posthog[1]));
correlationId = value?.distinct_id;
} catch (error) {
console.error("Error parsing posthog cookie", error);
}
}
return baseLogger.child({
name,
from: "browser",
correlationId,
// 添加浏览器环境特有信息
});
} else {
// 服务器环境处理逻辑
const isEdgeRuntime = typeof EdgeRuntime !== 'undefined';
if (isEdgeRuntime) {
// Edge Runtime特殊处理
if (!req) throw new Error('Request object is required in edge runtime');
const requestId = req.headers.get("x-vercel-id");
const posthog = req.cookies.get(posthogCookieName);
const value = JSON.parse(posthog?.value || '{}');
return baseLogger.child({
requestId,
correlationId: value?.distinct_id,
// 添加Edge环境特有信息
from: "edge",
name,
});
} else {
// 标准Node.js环境处理
const { cookies, headers } = require("next/headers");
const posthog = cookies().get(posthogCookieName);
const value = JSON.parse(posthog?.value || "{}");
return baseLogger.child({
name,
from: "server",
correlationId: value?.distinct_id,
requestId: headers().get("x-vercel-id"),
});
}
}
}
实际应用示例
在中间件中使用
const logger = getLogger('middleware', request);
logger.info({ path: request.nextUrl.pathname }, 'Middleware processing request');
在页面组件中使用
const logger = getLogger('src/app/page.tsx');
logger.info('Page component rendered');
在客户端组件中使用
"use client";
const logger = getLogger('src/components/Button.tsx');
function Button() {
const onClick = () => {
logger.info('Button clicked');
};
return <button onClick={onClick}>Click me</button>;
}
高级特性实现
1. 请求追踪
通过自动从请求头中提取x-vercel-id
作为请求ID,实现了跨服务的请求追踪。同时从PostHog cookie中提取用户标识作为关联ID,便于分析用户行为。
2. 环境区分
日志中自动添加from
字段标识日志来源(browser/edge/server),便于后期分析排查问题。
3. 上下文丰富
在浏览器环境中自动记录URL和查询参数,在服务器环境中记录请求方法和headers等信息,为问题诊断提供充分上下文。
性能优化建议
- 日志级别控制:在生产环境中适当提高日志级别阈值,避免记录过多调试信息
- 采样率配置:对于高流量应用,可以配置采样率避免日志量过大
- 批量传输:浏览器环境中可以考虑实现日志批量传输,减少网络请求
- 敏感信息过滤:确保不会记录敏感信息如密码、token等
错误处理策略
- cookie解析容错:对cookie解析添加try-catch,避免因格式问题导致日志记录中断
- 备用日志通道:当Logflare不可用时,应有备用日志存储方案
- 错误边界处理:在React组件中实现错误边界,确保日志记录错误不会影响UI渲染
总结
本文介绍的Next.js+Pino集成方案实现了以下目标:
- 统一了客户端和服务端的日志接口
- 自动关联请求和用户上下文
- 支持多种运行时环境(浏览器、Edge、Node.js)
- 实现了生产环境日志服务集成
- 提供了丰富的日志上下文信息
这种实现方式既保持了Pino的高性能特性,又适应了Next.js的全栈特性,为应用提供了强大的可观测性支持。开发者可以根据实际需求进一步扩展和定制,构建更加完善的日志监控系统。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
867
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3