TorchTitan项目将支持专家并行与DeepSeek模型训练
2025-06-19 20:34:37作者:龚格成
在深度学习训练框架领域,PyTorch生态下的TorchTitan项目正在积极扩展其并行训练能力。最新消息显示,该项目即将引入两项重要功能支持:专家并行(Expert Parallelism,EP)和DeepSeek系列模型的训练。
专家并行是一种专门针对混合专家(MoE)模型的并行策略。与现有的张量并行(TP)、流水线并行(PP)等策略不同,EP能够将模型中的不同专家分配到不同的计算设备上,这对于包含大量专家的MoE模型尤为重要。TorchTitan计划实现的EP将支持两种组合模式:TP+EP和DP+EP,这将为用户提供更灵活的并行配置选择。
在模型支持方面,TorchTitan团队已经取得了阶段性进展。目前已经实现了DeepSeek v2模型的训练循环(使用虚拟数据),而针对更新的DeepSeek v3模型的完整支持也正在开发中。这表明TorchTitan正在扩展其对前沿大模型的支持能力。
从技术实现角度看,支持EP需要解决几个关键问题:专家分配策略、跨设备通信优化以及负载均衡等。TorchTitan团队已经提交了相关PR,正在进行最后的完善工作。这种扩展将使TorchTitan在支持MoE架构模型方面更具竞争力。
对于深度学习从业者而言,这些新功能的加入意味着可以使用TorchTitan来训练更复杂的模型架构,特别是那些基于MoE设计的大模型。随着EP支持的完善和DeepSeek模型训练的加入,TorchTitan在大模型训练领域的应用场景将进一步扩大。
值得注意的是,这些新功能正处于积极开发阶段,预计将在不久的将来正式发布。这将为需要训练大规模MoE模型的研究人员和工程师提供更多选择,也体现了TorchTitan项目持续跟进前沿深度学习技术发展的承诺。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355