OVN-Kubernetes 安装与使用指南
1. 项目目录结构及介绍
OVN-Kubernetes项目在GitHub上的仓库地址是 https://github.com/ovn-org/ovn-kubernetes.git,其结构如下:
.
├── ADOPTERS.md # 采用者列表,记录了使用该项目的组织或项目。
├── CODEOWNERS # 指定代码审查负责人。
├── CODE_OF_CONDUCT.md # 代码行为规范。
├── CONTRIBUTING.md # 贡献者指南,说明如何参与项目贡献。
├── GOVERNANCE.md # 项目治理方式说明。
├── LICENSE # 许可证文件,表明遵循Apache-2.0许可。
├── MAINTAINERS.md # 维护者名单。
├── MEETINGS.md # 社区会议信息。
├── OWNERS # 项目维护和代码所有者的指定文件。
├── README.md # 主要的项目读我文件,概述项目功能和快速入门指导。
├── REVIEWING.md # 代码审查指南。
├── SECURITY.md # 安全政策相关说明。
├── crd-docs-config.yaml # CRD配置相关的文档配置文件。
├── mkdocs.yml # MkDocs配置文件,用于构建项目文档网站。
├── requirements.txt # Python依赖文件,如果项目中包含了Python脚本或工具的依赖。
└── 目录结构的其他部分包括各个关键组件的源码(如go-controller, helm等)以及测试相关文件。
每个Markdown文档都对应了一部分内容,对于理解项目整体架构、贡献流程、社区规则等方面至关重要。源代码目录则包含了实现特定功能的模块,例如go-controller
处理核心逻辑,helm
提供了Helm图表以便于部署。
2. 项目的启动文件介绍
OVN-Kubernetes作为一个Kubernetes网络插件,并没有一个单一的“启动文件”来直接启动整个项目。它的部署通常涉及多个步骤,包括设置环境、配置网络策略、以及安装CNI插件等。部署时,可能会用到Helm图表(位于helm
目录下),或者通过Kubernetes的YAML配置文件进行手动部署。因此,启动过程更多地依赖于Kubernetes集群本身的管理命令和特定的部署脚本/配置文件。
Helm启动简述
若使用Helm进行部署,你会查找或编辑helm
目录下的Chart模板,然后执行类似以下的命令:
helm install ovn-kubernetes <path-to-helm-chart> --namespace ovn-kubernetes
这只是一个简化示例,实际部署可能需要更具体的参数配置。
3. 项目的配置文件介绍
OVN-Kubernetes的配置主要体现在以下几个方面:
-
Kubernetes资源定义:通过Kubernetes YAML文件定义网络策略、服务、部署等。这些文件不是固定存在于某个特定位置,而是依据部署需求由管理员或自动化工具创建。
-
CNI配置:当作为CNI插件使用时,OVN-Kubernetes的配置可能涉及修改节点上的CNI配置文件,如
/etc/cni/net.d/
目录下的配置文件,指示Kubernetes使用OVN作为网络后端。 -
Helm Chart配置:如果你选择Helm进行部署,
values.yaml
文件是主要的配置入口点,允许你调整各种运行时参数,比如网络范围、服务CIDR等。
由于项目的核心在于与Kubernetes API交互并基于之配置网络,具体配置文件的内容和形式高度依赖于部署场景,可以非常定制化。建议查阅官方文档中的部署指南,特别是对于如何利用Helm图表自定义配置部分,以获得详细配置实例。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









