Great Expectations 1.3.2版本发布:数据质量监控工具的重要更新
Great Expectations是一个开源的数据质量监控和验证工具,它帮助数据工程师和分析师确保数据的准确性和可靠性。通过定义"期望"(Expectations),用户可以自动验证数据是否符合预期标准,从而在数据管道中建立信任。
核心功能增强
本次1.3.2版本在核心功能方面有几个重要改进:
检查点工厂增强:新增了CheckpointFactory.add_or_update方法,这使得用户能够更灵活地管理和更新他们的检查点配置。检查点是Great Expectations中定义和执行数据验证工作流的核心组件,这一改进简化了检查点生命周期的管理。
行数验证严格模式:ExpectTableRowCountToBeBetween期望现在支持strict_min和strict_max参数。这意味着用户可以更精确地控制行数验证的边界条件,例如要求行数必须严格大于最小值或严格小于最大值,而不是默认的包含边界值。
问题修复与稳定性提升
本次版本修复了多个关键问题,提升了工具的稳定性和可靠性:
唯一值计数验证修复:修复了ExpectColumnUniqueValueCountToBeBetween期望中strict_min和strict_max参数未正确设置的问题,确保了边界条件的严格验证能够按预期工作。
Pandas兼容性改进:扩展了对pandas series.between()方法中inclusive参数的处理逻辑,确保在不同pandas版本下的行为一致性。这对于依赖pandas进行数据验证的用户尤为重要。
输入验证强化:为多个期望添加了输入参数验证器,防止无效参数导致意外行为。这种防御性编程的增强提高了工具的健壮性。
文档改进
Great Expectations团队持续投入文档建设,本次更新包括:
- 改进了期望选择和数据质量问题分组的文档
- 统一了关于分析/使用统计的信息
- 更新了检查点代码片段的位置
- 修复了云环境中自定义SQL期望方法的文档
- 优化了多个数据质量用例文章的细节
这些文档改进使得新用户更容易上手,现有用户能更高效地使用高级功能。
技术维护与依赖管理
在技术维护方面,本次发布包含多项重要更新:
- 添加了
--force-reinstall标志到依赖管理命令,解决了一些环境配置问题 - 更新了
responses库的版本限制,修复了mypy类型检查相关的问题 - 移除了已标记为xfailed的测试,清理测试套件
- 针对boto3的破坏性变更进行了版本锁定
- 将MSSQL测试迁移到版本18驱动
- 解除了对
snowflake-sqlalchemy的版本限制
这些维护工作确保了Great Expectations在不同环境下的稳定运行,并为未来的开发奠定了基础。
总结
Great Expectations 1.3.2版本虽然在版本号上是一个小更新,但包含了多项对数据质量监控工作流有实质性影响的改进。从核心验证功能的增强,到关键问题的修复,再到文档的持续优化,这个版本进一步巩固了Great Expectations作为数据质量监控首选工具的地位。
对于现有用户,特别是那些依赖严格边界条件验证或使用pandas进行数据处理的团队,升级到这个版本将带来更好的体验和更可靠的结果。新用户也可以从改进的文档中受益,更快地上手这个强大的数据质量工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00