Great Expectations 1.3.2版本发布:数据质量监控工具的重要更新
Great Expectations是一个开源的数据质量监控和验证工具,它帮助数据工程师和分析师确保数据的准确性和可靠性。通过定义"期望"(Expectations),用户可以自动验证数据是否符合预期标准,从而在数据管道中建立信任。
核心功能增强
本次1.3.2版本在核心功能方面有几个重要改进:
检查点工厂增强:新增了CheckpointFactory.add_or_update方法,这使得用户能够更灵活地管理和更新他们的检查点配置。检查点是Great Expectations中定义和执行数据验证工作流的核心组件,这一改进简化了检查点生命周期的管理。
行数验证严格模式:ExpectTableRowCountToBeBetween期望现在支持strict_min和strict_max参数。这意味着用户可以更精确地控制行数验证的边界条件,例如要求行数必须严格大于最小值或严格小于最大值,而不是默认的包含边界值。
问题修复与稳定性提升
本次版本修复了多个关键问题,提升了工具的稳定性和可靠性:
唯一值计数验证修复:修复了ExpectColumnUniqueValueCountToBeBetween期望中strict_min和strict_max参数未正确设置的问题,确保了边界条件的严格验证能够按预期工作。
Pandas兼容性改进:扩展了对pandas series.between()方法中inclusive参数的处理逻辑,确保在不同pandas版本下的行为一致性。这对于依赖pandas进行数据验证的用户尤为重要。
输入验证强化:为多个期望添加了输入参数验证器,防止无效参数导致意外行为。这种防御性编程的增强提高了工具的健壮性。
文档改进
Great Expectations团队持续投入文档建设,本次更新包括:
- 改进了期望选择和数据质量问题分组的文档
- 统一了关于分析/使用统计的信息
- 更新了检查点代码片段的位置
- 修复了云环境中自定义SQL期望方法的文档
- 优化了多个数据质量用例文章的细节
这些文档改进使得新用户更容易上手,现有用户能更高效地使用高级功能。
技术维护与依赖管理
在技术维护方面,本次发布包含多项重要更新:
- 添加了
--force-reinstall标志到依赖管理命令,解决了一些环境配置问题 - 更新了
responses库的版本限制,修复了mypy类型检查相关的问题 - 移除了已标记为xfailed的测试,清理测试套件
- 针对boto3的破坏性变更进行了版本锁定
- 将MSSQL测试迁移到版本18驱动
- 解除了对
snowflake-sqlalchemy的版本限制
这些维护工作确保了Great Expectations在不同环境下的稳定运行,并为未来的开发奠定了基础。
总结
Great Expectations 1.3.2版本虽然在版本号上是一个小更新,但包含了多项对数据质量监控工作流有实质性影响的改进。从核心验证功能的增强,到关键问题的修复,再到文档的持续优化,这个版本进一步巩固了Great Expectations作为数据质量监控首选工具的地位。
对于现有用户,特别是那些依赖严格边界条件验证或使用pandas进行数据处理的团队,升级到这个版本将带来更好的体验和更可靠的结果。新用户也可以从改进的文档中受益,更快地上手这个强大的数据质量工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00