MemVR 的安装和配置教程
2025-05-22 04:53:25作者:霍妲思
1. 项目基础介绍和主要编程语言
MemVR 是一个开源项目,旨在为大型的多模态语言模型提供一种新的幻觉抑制范式,即 Memory-Space Visual Retracing(记忆空间视觉回溯)。该项目不需要外部知识检索或额外训练,能够有效减少各种多模态语言模型中的幻觉问题。MemVR 的优势在于无需增加时间开销,即可作为即插即用的解决方案。项目主要使用 Python 编程语言。
2. 项目使用的关键技术和框架
MemVR 使用了一些关键技术,主要包括:
- 记忆空间视觉回溯:通过在模型内部进行视觉信息的回溯,减少模型生成答案时的幻觉现象。
- 无需外部知识库:MemVR 不依赖于外部知识库,减少了知识获取的复杂性。
- 即插即用:作为一种即插即用的解决方案,MemVR 可以无缝集成到现有的多模态语言模型中。
该项目使用的关键框架和库可能包括但不限于 Python 的 Transformers 库。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装前,请确保您的系统满足以下要求:
- Python 3.10 或更高版本
- Git 版本控制系统
- conda 或其他 Python 环境管理工具
安装步骤
-
克隆 LLaVA 环境 首先需要克隆 LLaVA 仓库作为工作环境:
git clone https://github.com/haotian-liu/LLaVA cd LLaVA -
设置 Python 环境 使用 conda 创建新的 Python 环境,并激活它:
conda create -n memvr python==3.10 conda activate memvr -
安装依赖 在激活的环境中,安装所需的 Python 包:
pip install --upgrade pip pip install -e . -
更新 Transformers 库 将 Transformers 库更新到 4.40.0 版本:
pip install transformers==4.40.0 -
克隆 MemVR 项目 克隆 MemVR 仓库,并将内容移动到 LLaVA 的主目录下(除了 README.md):
git clone https://github.com/1zhou-Wang/MemVR.git cd MemVR cp * /path/to/LLaVA # 将 MemVR 的文件复制到 LLaVA 的主目录下 -
合并 eval 文件 将 MemVR 的 eval 文件合并到 LLaVA 的对应目录下:
cp eval /path/to/LLaVA/llava/ -
下载预训练模型 根据项目说明,下载相应的预训练模型并替换对应的模型文件。
-
测试环境 运行以下命令来检查环境是否配置正确:
python inference.py -
运行评估 按照项目中的 eval_scripts 运行评估脚本进行测试。
完成以上步骤后,您的 MemVR 环境应该已经配置完毕,可以进行后续的开发和使用工作了。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
653
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
641
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874