MemVR 的安装和配置教程
2025-05-22 11:34:38作者:霍妲思
1. 项目基础介绍和主要编程语言
MemVR 是一个开源项目,旨在为大型的多模态语言模型提供一种新的幻觉抑制范式,即 Memory-Space Visual Retracing(记忆空间视觉回溯)。该项目不需要外部知识检索或额外训练,能够有效减少各种多模态语言模型中的幻觉问题。MemVR 的优势在于无需增加时间开销,即可作为即插即用的解决方案。项目主要使用 Python 编程语言。
2. 项目使用的关键技术和框架
MemVR 使用了一些关键技术,主要包括:
- 记忆空间视觉回溯:通过在模型内部进行视觉信息的回溯,减少模型生成答案时的幻觉现象。
- 无需外部知识库:MemVR 不依赖于外部知识库,减少了知识获取的复杂性。
- 即插即用:作为一种即插即用的解决方案,MemVR 可以无缝集成到现有的多模态语言模型中。
该项目使用的关键框架和库可能包括但不限于 Python 的 Transformers 库。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装前,请确保您的系统满足以下要求:
- Python 3.10 或更高版本
- Git 版本控制系统
- conda 或其他 Python 环境管理工具
安装步骤
-
克隆 LLaVA 环境 首先需要克隆 LLaVA 仓库作为工作环境:
git clone https://github.com/haotian-liu/LLaVA cd LLaVA -
设置 Python 环境 使用 conda 创建新的 Python 环境,并激活它:
conda create -n memvr python==3.10 conda activate memvr -
安装依赖 在激活的环境中,安装所需的 Python 包:
pip install --upgrade pip pip install -e . -
更新 Transformers 库 将 Transformers 库更新到 4.40.0 版本:
pip install transformers==4.40.0 -
克隆 MemVR 项目 克隆 MemVR 仓库,并将内容移动到 LLaVA 的主目录下(除了 README.md):
git clone https://github.com/1zhou-Wang/MemVR.git cd MemVR cp * /path/to/LLaVA # 将 MemVR 的文件复制到 LLaVA 的主目录下 -
合并 eval 文件 将 MemVR 的 eval 文件合并到 LLaVA 的对应目录下:
cp eval /path/to/LLaVA/llava/ -
下载预训练模型 根据项目说明,下载相应的预训练模型并替换对应的模型文件。
-
测试环境 运行以下命令来检查环境是否配置正确:
python inference.py -
运行评估 按照项目中的 eval_scripts 运行评估脚本进行测试。
完成以上步骤后,您的 MemVR 环境应该已经配置完毕,可以进行后续的开发和使用工作了。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178