LangChain项目中使用ChatDeepSeek实现结构化输出的最佳实践
2025-04-28 17:20:51作者:田桥桑Industrious
在LangChain项目中,开发者经常需要将大语言模型的输出结构化处理,以便后续程序能够更好地解析和使用。本文将以ChatDeepSeek模型为例,详细介绍如何正确实现这一功能。
问题背景
在使用LangChain框架时,开发者可能会遇到函数调用(function calling)无法正常工作的问题。具体表现为:当尝试通过bind()
方法绑定Pydantic模型作为函数时,系统会抛出KeyError: 'function_call'
错误。这表明模型未能按预期返回函数调用结构。
技术分析
经过深入研究发现,这个问题源于LangChain生态中"函数调用"和"工具调用"两种机制的差异:
- 函数调用(Function Calling):早期的实现方式,直接绑定Pydantic模型作为函数
- 工具调用(Tool Calling):新的推荐方式,将功能封装为工具使用
解决方案
推荐使用工具调用(Tool Calling)方式实现结构化输出,以下是具体实现步骤:
1. 定义数据模型
首先需要定义Pydantic数据模型,描述期望输出的数据结构:
from pydantic import BaseModel, Field
class Tagging(BaseModel):
"""日志标签模型"""
status: str = Field(description="日志状态,可选值:'success', 'failure', 'pending', 'timeout'")
error_info: str = Field(description="当状态为'failure'时的错误信息,请用英文描述")
2. 转换为工具定义
将Pydantic模型转换为工具定义:
from langchain_core.utils.function_calling import convert_to_openai_function
function_def = convert_to_openai_function(Tagging)
tool = {"type": "function", "function": function_def}
3. 配置模型绑定
正确配置ChatDeepSeek模型,绑定工具并指定工具选择:
from langchain_deepseek import ChatDeepSeek
llm = ChatDeepSeek(
model='deepseek-ai/DeepSeek-V2.5',
api_base="https://api.siliconflow.cn/v1",
api_key="your_api_key"
).bind(
tools=[tool],
tool_choice={"type": "function", "function": {"name": "Tagging"}}
)
4. 构建处理链
构建完整的处理链,包括提示模板、模型调用和输出解析:
from langchain.prompts import ChatPromptTemplate
from langchain.output_parsers import JsonOutputToolsParser
prompt = ChatPromptTemplate.from_template("从以下文本中提取日志信息: {input}")
chain = prompt | llm | JsonOutputToolsParser()
5. 调用链并处理结果
最后调用处理链并获取结构化输出:
result = chain.invoke({"input": "Process exit with 0"})
print(result)
技术要点
- 工具与函数的区别:工具是更通用的概念,可以包含函数、API等多种实现方式
- 输出解析器选择:使用
JsonOutputToolsParser
而非JsonOutputFunctionsParser
- 绑定方式:推荐使用
bind()
方法的tools
和tool_choice
参数,而非旧的函数绑定方式
实际应用示例
以下是一个完整的日志分析应用示例:
def analyze_log(log_content):
# 构建处理链
function_def = convert_to_openai_function(Tagging)
tool = {"type": "function", "function": function_def}
llm = ChatDeepSeek(
model='deepseek-ai/DeepSeek-V2.5',
api_base="https://api.siliconflow.cn/v1",
api_key="your_api_key"
).bind(tools=[tool], tool_choice={"type": "function", "function": {"name": "Tagging"}})
prompt = ChatPromptTemplate.from_template("分析以下日志内容: {input}")
chain = prompt | llm | JsonOutputToolsParser()
# 执行分析
return chain.invoke({"input": log_content})
总结
在LangChain项目中使用ChatDeepSeek模型时,推荐采用工具调用(Tool Calling)的方式实现结构化输出。这种方法不仅解决了函数调用可能出现的兼容性问题,还提供了更灵活的功能扩展能力。开发者应遵循这一最佳实践,确保应用的稳定性和可维护性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K