LangChain项目中使用ChatDeepSeek实现结构化输出的最佳实践
2025-04-28 01:25:05作者:田桥桑Industrious
在LangChain项目中,开发者经常需要将大语言模型的输出结构化处理,以便后续程序能够更好地解析和使用。本文将以ChatDeepSeek模型为例,详细介绍如何正确实现这一功能。
问题背景
在使用LangChain框架时,开发者可能会遇到函数调用(function calling)无法正常工作的问题。具体表现为:当尝试通过bind()方法绑定Pydantic模型作为函数时,系统会抛出KeyError: 'function_call'错误。这表明模型未能按预期返回函数调用结构。
技术分析
经过深入研究发现,这个问题源于LangChain生态中"函数调用"和"工具调用"两种机制的差异:
- 函数调用(Function Calling):早期的实现方式,直接绑定Pydantic模型作为函数
- 工具调用(Tool Calling):新的推荐方式,将功能封装为工具使用
解决方案
推荐使用工具调用(Tool Calling)方式实现结构化输出,以下是具体实现步骤:
1. 定义数据模型
首先需要定义Pydantic数据模型,描述期望输出的数据结构:
from pydantic import BaseModel, Field
class Tagging(BaseModel):
"""日志标签模型"""
status: str = Field(description="日志状态,可选值:'success', 'failure', 'pending', 'timeout'")
error_info: str = Field(description="当状态为'failure'时的错误信息,请用英文描述")
2. 转换为工具定义
将Pydantic模型转换为工具定义:
from langchain_core.utils.function_calling import convert_to_openai_function
function_def = convert_to_openai_function(Tagging)
tool = {"type": "function", "function": function_def}
3. 配置模型绑定
正确配置ChatDeepSeek模型,绑定工具并指定工具选择:
from langchain_deepseek import ChatDeepSeek
llm = ChatDeepSeek(
model='deepseek-ai/DeepSeek-V2.5',
api_base="https://api.siliconflow.cn/v1",
api_key="your_api_key"
).bind(
tools=[tool],
tool_choice={"type": "function", "function": {"name": "Tagging"}}
)
4. 构建处理链
构建完整的处理链,包括提示模板、模型调用和输出解析:
from langchain.prompts import ChatPromptTemplate
from langchain.output_parsers import JsonOutputToolsParser
prompt = ChatPromptTemplate.from_template("从以下文本中提取日志信息: {input}")
chain = prompt | llm | JsonOutputToolsParser()
5. 调用链并处理结果
最后调用处理链并获取结构化输出:
result = chain.invoke({"input": "Process exit with 0"})
print(result)
技术要点
- 工具与函数的区别:工具是更通用的概念,可以包含函数、API等多种实现方式
- 输出解析器选择:使用
JsonOutputToolsParser而非JsonOutputFunctionsParser - 绑定方式:推荐使用
bind()方法的tools和tool_choice参数,而非旧的函数绑定方式
实际应用示例
以下是一个完整的日志分析应用示例:
def analyze_log(log_content):
# 构建处理链
function_def = convert_to_openai_function(Tagging)
tool = {"type": "function", "function": function_def}
llm = ChatDeepSeek(
model='deepseek-ai/DeepSeek-V2.5',
api_base="https://api.siliconflow.cn/v1",
api_key="your_api_key"
).bind(tools=[tool], tool_choice={"type": "function", "function": {"name": "Tagging"}})
prompt = ChatPromptTemplate.from_template("分析以下日志内容: {input}")
chain = prompt | llm | JsonOutputToolsParser()
# 执行分析
return chain.invoke({"input": log_content})
总结
在LangChain项目中使用ChatDeepSeek模型时,推荐采用工具调用(Tool Calling)的方式实现结构化输出。这种方法不仅解决了函数调用可能出现的兼容性问题,还提供了更灵活的功能扩展能力。开发者应遵循这一最佳实践,确保应用的稳定性和可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249