Swift项目中自定义数据集训练与验证集分割比例配置指南
2025-05-30 13:13:07作者:劳婵绚Shirley
在使用Modelscope Swift项目进行模型训练时,合理划分训练集和验证集是保证模型性能评估准确性的关键环节。本文将详细介绍如何通过配置参数实现自动化的数据集分割。
数据集分割的重要性
在机器学习项目中,我们通常需要将原始数据集划分为训练集和验证集两部分。训练集用于模型参数的学习,而验证集则用于评估模型在未见数据上的表现,防止过拟合。合理的分割比例对模型训练效果有着直接影响。
Swift项目中的分割参数配置
Swift项目提供了便捷的参数配置方式,允许用户在不单独指定验证集的情况下,自动从训练数据中划分出验证集。核心参数是split_dataset_ratio,该参数具有以下特性:
- 默认值:0.01(即1%的数据作为验证集)
- 取值范围:0到1之间的小数
- 特殊值0:表示不需要切分验证集,全部数据用于训练
- 使用场景:当用户未明确指定
val_dataset时生效
实际应用建议
-
小数据集场景:对于数据量较小的任务,建议设置较大的验证集比例(如0.2-0.3),确保有足够样本进行可靠评估。
-
大数据集场景:当数据量很大时,可以适当降低验证集比例(如0.01-0.05),既能保证评估效果,又不浪费过多训练数据。
-
特殊需求:如果项目不需要验证集(如仅进行预训练),可直接设置为0。
配置示例
在Swift项目的训练脚本或配置文件中,可以通过以下方式设置分割比例:
# 设置10%的数据作为验证集
train_args = {
'split_dataset_ratio': 0.1,
# 其他训练参数...
}
注意事项
-
当同时指定了
val_dataset和split_dataset_ratio时,系统会优先使用显式指定的验证集。 -
分割过程是随机的,为确保实验可复现性,建议同时设置随机种子。
-
对于类别不平衡的数据集,应考虑使用分层抽样来保持验证集中的类别分布。
通过合理配置split_dataset_ratio参数,开发者可以灵活控制训练/验证集的比例,从而更高效地利用数据资源,优化模型训练过程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1