Apache DataFusion 中分区表逻辑计划序列化问题分析
2025-06-14 09:09:57作者:裘旻烁
Apache DataFusion 是一个用 Rust 编写的现代化查询引擎,它提供了高性能的 SQL 查询执行能力。在最新版本中,我们发现了一个关于分区表逻辑计划序列化/反序列化的有趣问题,这个问题值得深入探讨。
问题现象
当使用 DataFusion 处理分区表(特别是 Hive 风格的分区表)时,如果对逻辑计划进行序列化后再反序列化,会导致查询失败。具体表现为 Schema 校验错误,提示字段重复("DuplicateQualifiedField"),特别是分区字段如"year"和"month"被重复识别。
技术背景
DataFusion 的 ListingTable 支持从文件系统读取数据,并可以自动识别 Hive 风格的分区结构。例如,路径如"/data/year=2024/month=1/"会被自动解析,并将"year"和"month"作为分区列添加到表结构中。
在内部实现上,ListingTable 会维护两个部分的数据:
- 基础表结构(从文件元数据推断)
- 分区列信息(从路径解析)
问题根源
经过分析,我们发现问题的核心在于逻辑计划的序列化过程中,proto 转换层错误地将分区列包含在了基础表结构中。具体来说:
- 原始表结构不包含分区列,分区列是单独维护的
- 序列化时错误地将分区列合并到了基础表结构
- 反序列化后,分区列既存在于分区信息中,又被错误地包含在表结构中,导致重复
解决方案
修复方案相对直接:在 proto 转换层确保分区列不会被错误地包含在基础表结构中。具体来说:
- 修改 logical_plan_to_bytes 实现,确保分区列信息正确分离
- 添加专门的测试用例覆盖分区表序列化场景
- 保持与原始表结构的一致性,不重复包含分区列
影响范围
这个问题主要影响以下场景:
- 分布式查询执行(如 Ballista)
- 需要序列化逻辑计划的缓存机制
- 跨进程边界的查询计划传递
最佳实践
对于开发者使用 DataFusion 的分区表功能,建议:
- 明确区分基础列和分区列
- 在自定义序列化逻辑时注意保持这种区分
- 测试时特别验证分区表的序列化场景
这个问题虽然技术点具体,但揭示了在复杂查询引擎中维护数据结构一致性的重要性,特别是在涉及序列化和分布式执行的场景下。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
260
92