Apache DataFusion 中分区表逻辑计划序列化问题分析
2025-06-14 10:33:45作者:裘旻烁
Apache DataFusion 是一个用 Rust 编写的现代化查询引擎,它提供了高性能的 SQL 查询执行能力。在最新版本中,我们发现了一个关于分区表逻辑计划序列化/反序列化的有趣问题,这个问题值得深入探讨。
问题现象
当使用 DataFusion 处理分区表(特别是 Hive 风格的分区表)时,如果对逻辑计划进行序列化后再反序列化,会导致查询失败。具体表现为 Schema 校验错误,提示字段重复("DuplicateQualifiedField"),特别是分区字段如"year"和"month"被重复识别。
技术背景
DataFusion 的 ListingTable 支持从文件系统读取数据,并可以自动识别 Hive 风格的分区结构。例如,路径如"/data/year=2024/month=1/"会被自动解析,并将"year"和"month"作为分区列添加到表结构中。
在内部实现上,ListingTable 会维护两个部分的数据:
- 基础表结构(从文件元数据推断)
- 分区列信息(从路径解析)
问题根源
经过分析,我们发现问题的核心在于逻辑计划的序列化过程中,proto 转换层错误地将分区列包含在了基础表结构中。具体来说:
- 原始表结构不包含分区列,分区列是单独维护的
- 序列化时错误地将分区列合并到了基础表结构
- 反序列化后,分区列既存在于分区信息中,又被错误地包含在表结构中,导致重复
解决方案
修复方案相对直接:在 proto 转换层确保分区列不会被错误地包含在基础表结构中。具体来说:
- 修改 logical_plan_to_bytes 实现,确保分区列信息正确分离
- 添加专门的测试用例覆盖分区表序列化场景
- 保持与原始表结构的一致性,不重复包含分区列
影响范围
这个问题主要影响以下场景:
- 分布式查询执行(如 Ballista)
- 需要序列化逻辑计划的缓存机制
- 跨进程边界的查询计划传递
最佳实践
对于开发者使用 DataFusion 的分区表功能,建议:
- 明确区分基础列和分区列
- 在自定义序列化逻辑时注意保持这种区分
- 测试时特别验证分区表的序列化场景
这个问题虽然技术点具体,但揭示了在复杂查询引擎中维护数据结构一致性的重要性,特别是在涉及序列化和分布式执行的场景下。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178