DS4SD/docling项目中实现单词级边界框解析的技术解析
2025-05-05 02:44:24作者:滑思眉Philip
在文档处理领域,精确获取文本元素的定位信息对于文档分析、信息提取和版面理解至关重要。DS4SD/docling项目近期实现了对单词级别边界框(bounding box)的支持,这一功能为文档处理提供了更细粒度的控制能力。
技术背景
传统的文档解析通常只能获取段落或行级别的文本位置信息,而单词级别的边界框则能够精确到文档中每个独立单词的坐标位置。这种精细化的位置信息对于以下场景特别有价值:
- 文档结构修复:当文档解析出现错误时,精确的单词位置可以帮助算法重新组织文本流
- 多语言处理:不同语言的混合排版需要精确的单词定位
- 表单处理:识别表单中的字段标签和对应值的关系
实现原理
DS4SD/docling项目通过以下技术路径实现了单词级边界框的提取:
-
原生PDF解析:系统直接解析PDF文件中的原生文本内容,而非依赖OCR技术。这种方法保证了边界框信息的准确性,避免了OCR可能引入的误差。
-
解析管道配置:开发者需要通过设置
pipeline_options.generate_parsed_pages = True来启用高级解析功能。这个选项会触发系统生成包含详细位置信息的解析结果。 -
数据结构设计:解析结果采用分层的数据结构组织:
- 文档级别:包含所有页面的集合
- 页面级别:存储单个页面的所有解析信息
- 单词级别:精确记录每个单词的坐标和边界框
使用方式
开发者可以通过以下步骤获取单词级边界框信息:
- 初始化文档解析管道并设置高级选项
- 执行文档解析操作
- 从解析结果中访问特定页面的
parsed_page属性 - 遍历页面中的文本元素,获取每个单词的精确位置信息
技术限制
需要注意的是,当前实现有以下技术限制:
- 仅支持原生PDF内容,不支持扫描文档或图像中的OCR文本
- 对于复杂排版(如表格、多栏)的文档,可能需要额外的后处理
- 边界框精度依赖于原始PDF的生成质量
应用前景
单词级边界框的支持为DS4SD/docling项目开辟了新的应用场景:
- 智能文档编辑:基于单词位置实现精确的内容修改
- 文档比对:在视觉层面比较文档差异
- 自动化测试:验证文档生成的准确性
- 辅助阅读:为视障用户提供更精确的阅读导航
随着这一功能的不断完善,DS4SD/docling项目在文档处理领域的应用价值将进一步提升。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492