Harvester项目中VM导入控制器在离线环境下的镜像拉取问题解析
问题背景
在Harvester v1.4.0和v1.4.1-rc1版本中,当用户尝试在完全离线的环境(airgapped)中部署集群时,VM导入控制器(VM Import Controller)会出现一个关键问题:相关Pod会陷入ImagePullBackoff状态,导致功能无法正常使用。这个问题在v1.4-d166b637-head版本中得到了修复。
问题现象
在离线环境中部署Harvester集群后,VM导入控制器相关的Pod无法正常启动,检查Pod状态会发现处于ImagePullBackoff状态。这主要是因为系统无法从外部拉取所需的容器镜像。
具体表现为:
- harvester-vm-import-controller Pod无法启动
- 查看Pod事件会显示镜像拉取失败的错误
- 相关功能完全不可用
问题根源
经过分析,这个问题主要由以下几个因素导致:
-
离线环境限制:在完全离线的环境中,Harvester集群无法访问外部镜像仓库来拉取VM导入控制器所需的容器镜像。
-
默认配置问题:原始版本中,UI相关的设置(如ui-index、ui-plugin-index等)默认指向外部网络地址,这在离线环境中显然无法工作。
-
版本同步问题:在v1.4.0和v1.4.1-rc1版本中,没有包含完整的离线部署支持,特别是对于VM导入控制器这一组件。
解决方案
开发团队通过以下方式解决了这个问题:
-
版本更新:在v1.4-d166b637-head版本中,包含了完整的修复方案。
-
镜像内置:将VM导入控制器所需的容器镜像(rancher/harvester-vm-import-controller:v0.4.1)内置到ISO中,确保离线环境可以直接使用。
-
PVC自动配置:系统现在能够自动为VM导入控制器创建持久卷声明(PVC),使用harvester-longhorn存储类,容量为223Gi。
验证结果
在修复后的版本中,验证显示:
- VM导入控制器Pod能够正常启动并运行
- 持久卷声明(PVC)自动创建成功并绑定到Pod
- 部署状态显示为可用(Available)和进行中(Progressing)
- 所有相关功能在离线环境中工作正常
技术实现细节
修复后的VM导入控制器部署具有以下特点:
-
资源限制:设置了合理的资源限制(CPU: 4核,内存: 8Gi)和请求(CPU: 2核,内存: 4Gi)
-
存储配置:使用持久化存储(/tmp挂载点)来保存临时数据
-
策略选择:采用Recreate部署策略,确保更新时先终止旧实例再创建新实例
-
服务账户:使用专用的服务账户(harvester-vm-import-controller)运行
对用户的影响
这一修复对用户带来的主要好处包括:
-
离线部署支持:现在可以在完全离线的环境中使用VM导入功能
-
稳定性提升:避免了因镜像拉取失败导致的功能不可用问题
-
自动化程度提高:存储资源配置完全自动化,无需人工干预
最佳实践建议
对于需要在离线环境中使用Harvester的用户,建议:
-
使用包含此修复的版本(v1.4-d166b637-head或更高)
-
在部署前确认ISO镜像包含所有必需的组件
-
确保集群有足够的资源(特别是存储资源)来支持VM导入操作
-
定期检查Pod和PVC状态,确保系统正常运行
这一修复显著提升了Harvester在离线环境中的可用性和稳定性,为用户提供了更完整的功能体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00