首页
/ TC-ResNet:移动设备上的实时关键词识别利器

TC-ResNet:移动设备上的实时关键词识别利器

2024-10-10 10:02:06作者:劳婵绚Shirley

项目介绍

在智能设备上,关键词识别(Keyword Spotting, KWS)是实现语音交互的关键技术之一。近年来,深度学习的发展使得卷积神经网络(CNN)在KWS系统中得到了广泛应用,因其卓越的准确性和鲁棒性。然而,KWS系统面临的主要挑战是如何在高准确性和低延迟之间取得平衡。传统的基于卷积的KWS方法通常需要大量的计算操作才能达到足够的性能水平,这在移动设备上尤为突出。

为了解决这一问题,我们提出了TC-ResNet,一种基于时间卷积的实时KWS模型,专为移动设备设计。与大多数依赖于2D卷积的KWS方法不同,TC-ResNet采用紧凑的ResNet架构,通过时间卷积来捕捉低频和高频域的信息。在Google Speech Command数据集上,TC-ResNet在Google Pixel 1设备上实现了超过385倍的加速,并且在准确性上超越了当前最先进的模型。

项目技术分析

TC-ResNet的核心技术在于其采用的时间卷积和紧凑的ResNet架构。时间卷积能够有效地处理音频信号的时间维度,而ResNet架构则保证了模型的深度和性能。通过这种结合,TC-ResNet不仅在准确性上表现出色,而且在移动设备上的延迟也大大降低。

此外,TC-ResNet的实现基于TensorFlow 1.13.1,支持Python 3.6及以上版本。项目提供了完整的训练和评估流程,用户可以通过简单的命令行操作来训练模型并生成.tflite文件,以便在移动设备上进行部署和测试。

项目及技术应用场景

TC-ResNet适用于需要实时关键词识别的多种应用场景,特别是在资源受限的移动设备上。例如:

  • 智能家居:通过语音指令控制家电设备,如智能音箱、智能灯泡等。
  • 语音助手:在智能手机或智能手表上实现语音唤醒和指令识别。
  • 车载系统:通过语音控制车载娱乐系统和导航系统,提升驾驶安全性。

在这些场景中,TC-ResNet的高效性和低延迟特性使其成为理想的选择。

项目特点

  • 高效率:在Google Pixel 1设备上实现了超过385倍的加速,显著降低了计算延迟。
  • 高准确性:在Google Speech Command数据集上,TC-ResNet的准确性超越了当前最先进的模型。
  • 易于部署:项目提供了完整的训练和评估流程,用户可以轻松地将模型部署到移动设备上。
  • 开源:基于Apache License 2.0开源,用户可以自由使用、修改和分发。

通过TC-ResNet,开发者可以在移动设备上实现高效、实时的关键词识别,为用户带来更加流畅和便捷的语音交互体验。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5