QuickJS-NG v0.10.0 版本发布:性能优化与新特性解析
QuickJS-NG 是基于 Fabrice Bellard 原版 QuickJS 项目的一个现代化分支,专注于提供轻量级、高性能的 JavaScript 引擎实现。该项目以其小巧的体积、完整的 ES2020 支持以及出色的执行效率而闻名,特别适合嵌入式系统和资源受限环境。
核心改进与优化
1. 全新的 BigInt 实现
v0.10.0 版本带来了全新的 BigInt 实现,采用了 32 位 limbs 结构。这一改进显著提升了 BigInt 运算的性能,特别是在处理大整数运算时。新的实现不仅优化了内存使用,还提高了计算效率,使得需要大整数运算的应用场景(如加密算法)能够获得更好的性能表现。
2. 内存管理优化
本次版本修复了多个内存泄漏问题,包括:
- WeakMap 实现中的内存泄漏
- 生成器函数中的引用计数泄漏
- 字符串填充操作中的内存泄漏
- hash_map_resize() 函数的优化
这些修复使得引擎在长时间运行时更加稳定,特别是在处理复杂对象关系和大量字符串操作时。
3. Windows ARM64 支持
新增了对 Windows ARM64 架构的官方支持,这意味着 QuickJS-NG 现在可以原生运行在基于 ARM 架构的 Windows 设备上,如 Surface Pro X 等设备。这一变化扩展了 QuickJS-NG 的应用场景,使其能够在更多类型的硬件平台上运行。
新特性介绍
1. Array.fromAsync 方法
v0.10.0 实现了 Array.fromAsync 方法,这是 JavaScript 最新的异步数组操作方法。它允许开发者从异步可迭代对象创建数组,简化了异步数据处理的流程。这个特性对于处理流式数据或异步数据源特别有用。
2. Promise Hooks
新增的 Promise Hooks 功能为开发者提供了对 Promise 生命周期的细粒度控制能力。通过这个特性,开发者可以:
- 追踪 Promise 的创建
- 监控 Promise 的状态变化
- 捕获未处理的 Promise 异常
这对于调试异步代码和实现高级的异步控制流非常有帮助。
3. 解析器优化与构建选项
本次版本引入了"parserless"构建模式,允许在不需要完整 JavaScript 解析功能的情况下构建更精简的引擎版本。这对于只需要执行预编译代码的环境特别有用,可以进一步减小引擎的体积。
性能提升
除了 BigInt 的优化外,v0.10.0 还包含多项性能改进:
- 使用了 xsum 小型累加器优化校验和计算
- 优化了自动初始化分派表,使其变为只读
- 改进了 DataView 在缓冲区调整大小时的长度更新机制
这些优化使得引擎在各种场景下的执行效率都有所提升。
兼容性与稳定性
v0.10.0 修复了多个边界情况下的问题:
- 修复了日期解析中超过9个连续数字的问题
- 修复了输入损坏时的OOB读取问题
- 改进了 Windows 平台上的 Worker 支持
- 更新了 WASI SDK 以提供更好的 WebAssembly 支持
开发者工具改进
qjsc 编译器新增了 -C 标志,允许将代码编译为经典脚本而非模块。这为需要传统脚本加载方式的场景提供了更好的支持。
总结
QuickJS-NG v0.10.0 版本在性能、内存管理和功能完整性方面都做出了显著改进。新加入的 Array.fromAsync 和 Promise Hooks 等特性使其与现代 JavaScript 生态保持同步,而底层的优化则进一步提升了引擎的执行效率。这些改进使得 QuickJS-NG 成为嵌入式 JavaScript 引擎中更具竞争力的选择,特别适合需要高性能和小体积的场景。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00