Azure-Samples/azure-search-openai-demo 项目中的 OpenAI 模型升级指南
在 Azure-Samples/azure-search-openai-demo 项目中,开发者可能会遇到需要将已部署的 OpenAI 模型从 gpt-35-turbo 升级到 gpt-4 的情况。本文将详细介绍这一过程中的关键步骤和注意事项。
模型升级的核心问题
当尝试直接修改部署模型时,系统会返回错误信息:"CannotChangeDeploymentModel: The model of deployment cannot be changed"。这是因为 Azure OpenAI 服务不允许直接修改现有部署的模型类型,这是平台的设计限制。
正确的升级流程
-
删除原有部署
首先需要在 Azure AI Studio 中删除原有的 gpt-35-turbo 模型部署。这是必要的步骤,因为 Azure 不允许直接修改已部署模型的类型。 -
设置新的部署名称
使用以下命令设置新的部署名称:azd env set AZURE_OPENAI_CHATGPT_DEPLOYMENT chat4这里的"chat4"可以替换为任何你喜欢的部署名称,但必须与后续配置保持一致。
-
修改模型配置
在项目的 main.bicep 文件中,需要修改以下参数:param chatGptModelName string = (openAiHost == 'azure') ? 'gpt-4' : 'gpt-4' -
处理模型版本
如果使用 gpt-4 的特定版本(如 0125-Preview),需要注意版本号的格式:param chatGptModelVersion string = '0125-Preview'特别注意版本号中的大小写,如"Preview"的首字母必须大写。
常见问题解决方案
-
部署失败问题
如果遇到"DeploymentModelNotSupported"错误,请检查:- 确保模型名称和版本号完全匹配
- 确认你的订阅和区域支持所选的模型
- 检查版本号的大小写是否正确
-
性能注意事项
gpt-4 模型的响应时间通常比 gpt-35-turbo 长,平均可能达到45秒左右。这是模型复杂度增加带来的正常现象,同时也会带来回答质量的显著提升。 -
环境配置
建议不要直接修改 main.parameters.json 文件,而是通过 azd env set 命令来设置环境变量,这样可以避免配置冲突。
最佳实践建议
- 在升级模型前,先在 Azure OpenAI Studio 中确认目标模型在你的区域是否可用。
- 考虑创建一个全新的环境进行测试,避免影响现有生产环境。
- 记录下原有的配置参数,以便在需要时可以快速回滚。
- 升级完成后,进行充分的测试,特别是关注API响应时间和资源消耗情况。
通过遵循上述步骤和注意事项,开发者可以顺利完成 Azure-Samples/azure-search-openai-demo 项目中的 OpenAI 模型升级工作。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00