Azure-Samples/azure-search-openai-demo 项目中的 OpenAI 模型升级指南
在 Azure-Samples/azure-search-openai-demo 项目中,开发者可能会遇到需要将已部署的 OpenAI 模型从 gpt-35-turbo 升级到 gpt-4 的情况。本文将详细介绍这一过程中的关键步骤和注意事项。
模型升级的核心问题
当尝试直接修改部署模型时,系统会返回错误信息:"CannotChangeDeploymentModel: The model of deployment cannot be changed"。这是因为 Azure OpenAI 服务不允许直接修改现有部署的模型类型,这是平台的设计限制。
正确的升级流程
-
删除原有部署
首先需要在 Azure AI Studio 中删除原有的 gpt-35-turbo 模型部署。这是必要的步骤,因为 Azure 不允许直接修改已部署模型的类型。 -
设置新的部署名称
使用以下命令设置新的部署名称:azd env set AZURE_OPENAI_CHATGPT_DEPLOYMENT chat4
这里的"chat4"可以替换为任何你喜欢的部署名称,但必须与后续配置保持一致。
-
修改模型配置
在项目的 main.bicep 文件中,需要修改以下参数:param chatGptModelName string = (openAiHost == 'azure') ? 'gpt-4' : 'gpt-4'
-
处理模型版本
如果使用 gpt-4 的特定版本(如 0125-Preview),需要注意版本号的格式:param chatGptModelVersion string = '0125-Preview'
特别注意版本号中的大小写,如"Preview"的首字母必须大写。
常见问题解决方案
-
部署失败问题
如果遇到"DeploymentModelNotSupported"错误,请检查:- 确保模型名称和版本号完全匹配
- 确认你的订阅和区域支持所选的模型
- 检查版本号的大小写是否正确
-
性能注意事项
gpt-4 模型的响应时间通常比 gpt-35-turbo 长,平均可能达到45秒左右。这是模型复杂度增加带来的正常现象,同时也会带来回答质量的显著提升。 -
环境配置
建议不要直接修改 main.parameters.json 文件,而是通过 azd env set 命令来设置环境变量,这样可以避免配置冲突。
最佳实践建议
- 在升级模型前,先在 Azure OpenAI Studio 中确认目标模型在你的区域是否可用。
- 考虑创建一个全新的环境进行测试,避免影响现有生产环境。
- 记录下原有的配置参数,以便在需要时可以快速回滚。
- 升级完成后,进行充分的测试,特别是关注API响应时间和资源消耗情况。
通过遵循上述步骤和注意事项,开发者可以顺利完成 Azure-Samples/azure-search-openai-demo 项目中的 OpenAI 模型升级工作。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









