Kubeshark Worker容器崩溃问题分析与解决方案
问题背景
在Kubeshark项目中,用户报告了Worker组件中的sniffer容器频繁崩溃的问题。该问题表现为容器以错误代码2退出,导致整个Pod崩溃。系统环境为K3s v1.31.2+k3s1运行在Ubuntu 22.04上。
问题现象
从日志中可以观察到大量关于/hostproc/[pid]/exe路径不存在的错误信息。这些错误表明sniffer容器在尝试读取主机进程信息时遇到了问题。然而,经过深入分析后发现,这些错误信息实际上并不是导致容器崩溃的根本原因。
根本原因分析
经过技术团队调查,发现真正的问题根源在于容器的就绪探针(Readiness Probe)和存活探针(Liveness Probe)失败。具体来说,问题出在sniffer启动时进行TCP/UDP连接扫描的初始化过程。
在最新版本的代码中,Worker组件启动时会扫描系统中所有现有的TCP/UDP连接,以便正确解析在Kubeshark启动前就已存在的连接的源/目的信息。这一过程需要扫描所有网络命名空间的连接,并且是在一个被锁定的线程中执行的。
在Kubernetes环境中,系统可能会限制线程的执行,这会显著减慢整个初始化过程,包括就绪探针的响应时间。当探针响应超时,Kubernetes就会认为容器不健康,从而导致容器被终止。
技术细节
问题代码位于Worker组件的初始化部分,具体是在扫描和解析现有网络连接的逻辑中。这一设计虽然能够提供更全面的连接信息,但在某些环境条件下会导致性能问题:
- 全量扫描所有网络命名空间的连接
- 线程锁定导致的执行效率下降
- Kubernetes环境对线程调度的限制
解决方案
技术团队考虑了多种可能的解决方案:
- 按需解析TCP连接:改为在需要时才解析连接信息,但这可能会影响sniffer的整体性能。
- 独立连接扫描容器:设计一个独立的容器专门负责扫描连接信息,并将结果存入共享数据库。
- 优化现有实现:在保持当前架构的基础上进行性能优化。
最终,团队选择了第三种方案,通过优化现有实现来解决问题。这一方案在保持功能完整性的同时,解决了性能瓶颈问题。
修复版本
该问题已在Kubeshark v52.3.95版本中得到修复。用户升级到该版本后,Worker容器的稳定性问题将得到解决。
经验总结
这个问题给我们提供了几个重要的经验教训:
- 探针设计需考虑初始化耗时:在容器化应用中,就绪探针和存活探针的设计必须充分考虑初始化过程的耗时特性。
- 系统级扫描需谨慎:进行全系统范围的扫描操作时,需要考虑其对容器生命周期管理的影响。
- 环境差异的影响:在不同Kubernetes发行版(如K3s)和不同Linux发行版上,系统行为可能存在差异,需要进行充分测试。
通过这次问题的解决,Kubeshark项目在容器稳定性和性能方面又向前迈进了一步。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00