Kubeshark Worker容器崩溃问题分析与解决方案
问题背景
在Kubeshark项目中,用户报告了Worker组件中的sniffer容器频繁崩溃的问题。该问题表现为容器以错误代码2退出,导致整个Pod崩溃。系统环境为K3s v1.31.2+k3s1运行在Ubuntu 22.04上。
问题现象
从日志中可以观察到大量关于/hostproc/[pid]/exe
路径不存在的错误信息。这些错误表明sniffer容器在尝试读取主机进程信息时遇到了问题。然而,经过深入分析后发现,这些错误信息实际上并不是导致容器崩溃的根本原因。
根本原因分析
经过技术团队调查,发现真正的问题根源在于容器的就绪探针(Readiness Probe)和存活探针(Liveness Probe)失败。具体来说,问题出在sniffer启动时进行TCP/UDP连接扫描的初始化过程。
在最新版本的代码中,Worker组件启动时会扫描系统中所有现有的TCP/UDP连接,以便正确解析在Kubeshark启动前就已存在的连接的源/目的信息。这一过程需要扫描所有网络命名空间的连接,并且是在一个被锁定的线程中执行的。
在Kubernetes环境中,系统可能会限制线程的执行,这会显著减慢整个初始化过程,包括就绪探针的响应时间。当探针响应超时,Kubernetes就会认为容器不健康,从而导致容器被终止。
技术细节
问题代码位于Worker组件的初始化部分,具体是在扫描和解析现有网络连接的逻辑中。这一设计虽然能够提供更全面的连接信息,但在某些环境条件下会导致性能问题:
- 全量扫描所有网络命名空间的连接
- 线程锁定导致的执行效率下降
- Kubernetes环境对线程调度的限制
解决方案
技术团队考虑了多种可能的解决方案:
- 按需解析TCP连接:改为在需要时才解析连接信息,但这可能会影响sniffer的整体性能。
- 独立连接扫描容器:设计一个独立的容器专门负责扫描连接信息,并将结果存入共享数据库。
- 优化现有实现:在保持当前架构的基础上进行性能优化。
最终,团队选择了第三种方案,通过优化现有实现来解决问题。这一方案在保持功能完整性的同时,解决了性能瓶颈问题。
修复版本
该问题已在Kubeshark v52.3.95版本中得到修复。用户升级到该版本后,Worker容器的稳定性问题将得到解决。
经验总结
这个问题给我们提供了几个重要的经验教训:
- 探针设计需考虑初始化耗时:在容器化应用中,就绪探针和存活探针的设计必须充分考虑初始化过程的耗时特性。
- 系统级扫描需谨慎:进行全系统范围的扫描操作时,需要考虑其对容器生命周期管理的影响。
- 环境差异的影响:在不同Kubernetes发行版(如K3s)和不同Linux发行版上,系统行为可能存在差异,需要进行充分测试。
通过这次问题的解决,Kubeshark项目在容器稳定性和性能方面又向前迈进了一步。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









