Spark Operator中Yunikorn任务组内存计算问题解析
问题背景
在Kubernetes环境中使用Spark Operator运行PySpark作业时,当配置了spark.executor.pyspark.memory参数时,可能会出现Executor Pod无法调度的问题。这是由于Yunikorn调度器的任务组内存计算未包含PySpark专用内存导致的资源不匹配问题。
问题现象
当用户提交一个包含spark.executor.pyspark.memory配置的SparkApplication时,Executor Pod会一直处于Pending状态。通过检查发现:
-
Executor Pod的实际内存请求包含了三部分:
- 基础内存(
memory) - 内存开销(
memoryOverhead) - PySpark专用内存(
spark.executor.pyspark.memory)
- 基础内存(
-
但Yunikorn任务组注解中的最小资源(
minResources.memory)仅包含前两部分,导致调度器认为Pod请求的资源超过了预留的资源量。
技术原理
Spark Operator在Kubernetes上运行时,会通过Yunikorn调度器进行资源调度。Yunikorn使用任务组(task group)机制来实现Gang Scheduling,确保相关Pod能够同时调度。每个任务组会预先声明所需的最小资源量,调度器根据这个声明来预留资源。
在PySpark场景下,Spark会为Python进程分配额外的内存空间,这部分通过spark.executor.pyspark.memory参数配置。Spark Operator正确地将这部分内存添加到了Pod的资源请求中,但在生成Yunikorn任务组注解时遗漏了这一部分,导致资源声明不匹配。
影响范围
该问题影响以下环境:
- 使用Spark Operator v2.0.0-rc.0版本
- 配置了Yunikorn作为批处理调度器
- 运行PySpark作业并设置了
spark.executor.pyspark.memory参数
解决方案
社区已经确认了这个问题,并计划在后续版本中修复。修复方案将确保Yunikorn任务组的内存计算包含所有三个部分:
- 基础内存
- 内存开销
- PySpark专用内存
临时解决方案可以暂时不设置spark.executor.pyspark.memory参数,或者手动增加memoryOverhead来补偿这部分内存需求。
最佳实践
对于PySpark作业的资源规划,建议:
- 明确区分JVM内存和Python内存需求
- 合理设置
spark.executor.memory和spark.executor.pyspark.memory - 预留足够的内存开销(
memoryOverhead) - 监控实际内存使用情况,根据需求调整配置
总结
这个问题展示了在复杂调度环境中资源计算一致性的重要性。Spark Operator需要确保在所有资源声明点(Pod请求、调度器注解等)使用相同的计算逻辑,才能保证调度的正确性。对于使用PySpark的用户,需要特别注意Python进程特有的内存需求配置。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00