MILK: 机器学习工具包技术文档
2024-12-23 11:34:16作者:廉皓灿Ida
1. 安装指南
1.1 系统要求
- Python 2.7 或 Python 3.x
- NumPy
- 支持C++编译器(如GCC或MSVC)
1.2 安装步骤
-
通过pip安装:
pip install milk -
通过源码安装:
- 下载源码包并解压。
- 进入解压后的目录,运行以下命令:
python setup.py install
-
验证安装:
- 安装完成后,可以通过以下代码验证是否安装成功:
import milk print(milk.__version__)
- 安装完成后,可以通过以下代码验证是否安装成功:
2. 项目使用说明
2.1 监督分类
Milk 提供了多种监督分类器,包括SVM、k-NN、随机森林和决策树。以下是一个简单的分类示例:
import numpy as np
import milk
# 生成随机数据
features = np.random.rand(100, 10)
labels = np.zeros(100)
features[50:] += .5
labels[50:] = 1
# 使用默认分类器
learner = milk.defaultclassifier()
model = learner.train(features, labels)
# 对新样本进行分类
example = np.random.rand(10)
print(model.apply(example))
2.2 无监督学习
Milk 支持k-means聚类和亲和传播。以下是一个k-means聚类的示例:
import numpy as np
import milk
# 生成随机数据
features = np.random.rand(100, 10)
# 进行k-means聚类
centroids, labels = milk.kmeans(features, k=3)
print(centroids)
print(labels)
3. 项目API使用文档
3.1 主要模块
- milk.supervised:包含监督学习算法,如SVM、k-NN、随机森林等。
- milk.unsupervised:包含无监督学习算法,如k-means、亲和传播等。
- milk.featureselection:包含特征选择算法,如逐步判别分析。
3.2 常用函数
- milk.nfoldcrossvalidation(features, labels):进行n折交叉验证。
- milk.defaultclassifier():返回默认的分类器。
- milk.kmeans(features, k):进行k-means聚类。
3.3 示例代码
import milk
# 使用默认分类器进行训练
learner = milk.defaultclassifier()
model = learner.train(features, labels)
# 对新样本进行分类
result = model.apply(new_example)
4. 项目安装方式
4.1 通过pip安装
pip install milk
4.2 通过源码安装
- 下载源码包并解压。
- 进入解压后的目录,运行以下命令:
python setup.py install
4.3 验证安装
import milk
print(milk.__version__)
通过以上步骤,您可以成功安装并使用Milk机器学习工具包。希望这篇文档能帮助您更好地理解和使用Milk。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669