OpenRLHF框架中Ring Attention与DPO Loss对齐问题的技术分析
2025-06-03 18:08:24作者:庞眉杨Will
引言
在大型语言模型训练过程中,OpenRLHF框架提供了Ring Attention这一创新技术来优化显存使用。然而,当结合DPO(直接偏好优化)训练时,用户报告了Ring Attention开启后Loss曲线异常的问题。本文将深入分析这一现象的技术原因,并提供解决方案。
问题现象
在OpenRLHF框架中,用户观察到:
- 开启Ring Attention后,DPO训练的Loss曲线与未开启时存在明显差异
- Ring Attention的size越大,Loss震荡幅度越明显
- 当Ring Attention size=8时,Loss波动显著大于size=2的情况
技术原理分析
Ring Attention工作机制
Ring Attention通过将注意力计算分布在多个GPU上,实现了:
- 显存优化:将长序列分割处理
- 计算并行:多卡协同完成注意力计算
DPO Loss计算特点
DPO Loss计算需要:
- 完整序列的logits计算
- 偏好对的对比损失
- 稳定的梯度更新
问题根源
- 数据并行组变化:开启Ring Attention后,数据并行组从全GPU变为num_gpu/ring_size
- 有效batch size变化:每个micro batch处理的样本数实际减少
- 序列packing影响:packed样本长度不均导致Loss计算波动
解决方案
配置调整原则
要保证Loss对齐,需遵循:
实际有效batch size = (num_gpu / ring_size) * micro_batch_size
具体配置建议
-
单机8卡场景:
- 原配置:train_bs=8, micro=1, ring=1
- 对应Ring配置:train_bs=8, micro=8, ring=8
-
梯度累积修正: 框架应调整梯度累积计算逻辑,将ring_size乘数前置:
grad_acc = max(1, train_bs // (micro_bs * (world_size // ring_size)))
Loss计算优化
建议修改Loss平均计算方式:
- 按实际样本数而非token数平均
- 确保packed样本与未pack样本的Loss可比性
实践验证
用户测试表明,经过上述调整后:
- 开启Ring Attention与不开启的Loss曲线基本一致
- 不同Ring size下的训练稳定性得到保障
- 显存优化效果得以保持
结论
OpenRLHF框架中Ring Attention与DPO训练的结合需要特别注意batch size的配置对齐。通过合理调整micro batch size和梯度累积步数,可以既享受Ring Attention的显存优化优势,又保持DPO训练的稳定性。这一问题的解决为大规模语言模型的高效训练提供了重要参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
441
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
819
395
Ascend Extension for PyTorch
Python
249
285
React Native鸿蒙化仓库
JavaScript
276
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
50
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
678
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
555
111