OpenRLHF框架中Ring Attention与DPO Loss对齐问题的技术分析
2025-06-03 21:37:51作者:庞眉杨Will
引言
在大型语言模型训练过程中,OpenRLHF框架提供了Ring Attention这一创新技术来优化显存使用。然而,当结合DPO(直接偏好优化)训练时,用户报告了Ring Attention开启后Loss曲线异常的问题。本文将深入分析这一现象的技术原因,并提供解决方案。
问题现象
在OpenRLHF框架中,用户观察到:
- 开启Ring Attention后,DPO训练的Loss曲线与未开启时存在明显差异
- Ring Attention的size越大,Loss震荡幅度越明显
- 当Ring Attention size=8时,Loss波动显著大于size=2的情况
技术原理分析
Ring Attention工作机制
Ring Attention通过将注意力计算分布在多个GPU上,实现了:
- 显存优化:将长序列分割处理
- 计算并行:多卡协同完成注意力计算
DPO Loss计算特点
DPO Loss计算需要:
- 完整序列的logits计算
- 偏好对的对比损失
- 稳定的梯度更新
问题根源
- 数据并行组变化:开启Ring Attention后,数据并行组从全GPU变为num_gpu/ring_size
- 有效batch size变化:每个micro batch处理的样本数实际减少
- 序列packing影响:packed样本长度不均导致Loss计算波动
解决方案
配置调整原则
要保证Loss对齐,需遵循:
实际有效batch size = (num_gpu / ring_size) * micro_batch_size
具体配置建议
-
单机8卡场景:
- 原配置:train_bs=8, micro=1, ring=1
- 对应Ring配置:train_bs=8, micro=8, ring=8
-
梯度累积修正: 框架应调整梯度累积计算逻辑,将ring_size乘数前置:
grad_acc = max(1, train_bs // (micro_bs * (world_size // ring_size)))
Loss计算优化
建议修改Loss平均计算方式:
- 按实际样本数而非token数平均
- 确保packed样本与未pack样本的Loss可比性
实践验证
用户测试表明,经过上述调整后:
- 开启Ring Attention与不开启的Loss曲线基本一致
- 不同Ring size下的训练稳定性得到保障
- 显存优化效果得以保持
结论
OpenRLHF框架中Ring Attention与DPO训练的结合需要特别注意batch size的配置对齐。通过合理调整micro batch size和梯度累积步数,可以既享受Ring Attention的显存优化优势,又保持DPO训练的稳定性。这一问题的解决为大规模语言模型的高效训练提供了重要参考。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.55 K
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
170
12
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
105
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.85 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
732
70