探索未来医疗影像解析:XNet — 波let融合的半监督与全监督语义分割框架
2024-06-11 12:24:50作者:裘晴惠Vivianne
在医疗图像处理领域,准确的语义分割至关重要,它能帮助医生识别疾病并制定治疗计划。XNet,一个创新的波let基低频与高频融合网络,为半监督和全监督的生物医学图像语义分割带来了新的突破。本文将带你了解XNet的核心价值,深入解析其技术细节,并探讨其潜在的应用场景。
项目介绍
XNet源于ICCV 2023的一篇研究论文,设计了一种双分支架构,分别处理由离散小波变换得到的低频(LF)和高频(HF)信息。通过智能地融合这两个互补的特征通道,XNet实现了对复杂结构和细微细节的精确分割。从可视化结果来看,这种创新方法在多个数据集上的表现超越了现有模型,特别是在资源有限的半监督学习情况下。
项目技术分析
- 双分支结构:XNet采用LF和HF两个独立的网络分支,分别捕获全局结构和局部细节。
- LF与HF融合模块:这个模块巧妙地结合了LF的稳定性和HF的敏感性,以提高分割的准确性。
- 深度学习与小波理论的结合:利用小波变换进行频率域的信息提取,再结合深度学习的力量,XNet能够在低监督下提供接近全监督的效果。
应用场景
XNet适用于各种医疗成像任务,包括但不限于:
- 胃肠镜检查图像分割:有助于检测息肉和其他异常区域。
- 细胞核分割:支持病理科的诊断工作。
- 肝脏和肿瘤分割:对于手术规划和治疗效果评估有重大意义。
此外,由于其对标注需求的降低,XNet还特别适合在缺乏大量注释数据的环境中应用。
项目特点
- 高效性能:即便在半监督条件下,XNet也能实现与全监督方法相当的分割精度。
- 资源友好:XNet针对资源限制优化,能在有限计算资源下运行。
- 广泛适用:覆盖2D和3D模型,可应用于多种医疗成像维度。
- 开放源代码:所有实现都已开源,方便科研人员复制实验并扩展到其他应用。
要开始使用XNet,只需满足列出的依赖项,按照提供的数据准备指南组织您的数据,并运行相应的训练脚本。无论是对医疗图像分割的初学者还是经验丰富的研究人员,XNet都是值得探索的强大工具。
如果你正在寻找一种能提升医疗影像分析能力的解决方案,那么XNet无疑是你不容错过的优秀选择。立即尝试,开启你的医疗图像处理新篇章!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
527
3.73 K
Ascend Extension for PyTorch
Python
336
400
暂无简介
Dart
768
191
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
882
589
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
170
React Native鸿蒙化仓库
JavaScript
302
353
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
749
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246